it
~

)

L) .‘
vt .s. _u: il
il
S wm o
¢ - 3
..:q.“:-a.:.::
b 3

A

Voo Il Apple [lcs™ Firmware Reference

A & A a

S R R e AR e e

> s24.95 FPT
USA

The Apple IIs Technical Library

The Official Publications from
Apple Computer, Inc.

Now Apple Ils™ programmers and enthusiasts can
have comprehensive and definitive information
about the Apple IlGs system at their fingertips. The
Apple Ilcs Technical Library provides much-needed
information on all aspects of the Apple Ilcs, ranging
from details of the new logic board and firmware to
a complete description of the more than 800
powerful routines in the Apple Ilcs Toolbox.
Whether you need a technical overview, details on
the new ProDOS® 16 operating system, or
information on Macintosh™-style event-driven
programming, the Apple Ilcs Technical Library has
the complete and definitive answers.

These books, written and produced by Apple
Computer, Inc., provide authoritative references for
those interested in getting the most out of their
Apple Ilcs.

Titles in the Apple Ils Technical Library and related
titles from the Apple Technical Library include:
Technical Introduction to the Apple Ilcs
Apple Ilcs Hardware Reference
Apple IGs Firmware Reference
Apple Is Toolbox Reference, Volume I
Apple Ils Toolbox Reference, Volume I
Apple IlGs ProDOS 16 Reference
Programmer’s Introduction to the Apple Ilcs
Apple Numerics Manual
ImageWriter®Il Technical Reference Manual ;

Don Mills, Ontario

Menlo Park, California

Reference

Santiago San Juan

Wokingham, England Amsterdam Bonn Sydney Singapore Tokyo

Addison-Wesley Publishing Company, Inc.
Madrid Bogoti

Reading, Massachusetts

ooooao.
-..’.’)’...I.).-.

A
vy

Apple.Il Apple IIGs. Firmware

g
]

@ APPLE COMPUTER, INC.

Copyright © 1987 by Apple
Computer, Inc.

All rights reserved. No part of
this publication may be repro-
dueed, stored in 4 retrieval
system, or transmitted, in any
form or by any means, mechan-
ical, electronic, photocopying,
recording, or otherwise, without
prior written permission of
Apple Computer, Inc. Printed in
the United States of America.

Apple, the Apple logo,
AppleTalk, Disk II, DuoDisk,
LaserWriter, and ProDOS are
registered trademarks of Apple
Computer, Inc.

Apple DeskTop Bus,
AppleMouse, Apple 1IGS,
Macintosh, SANE, and UniDisk
are trademarks of Apple
Computer, Inc.

ITC Garamond, ITC Avant Garde
Gothic, and ITC Zapf Dingbats
are registered trademarks of
International Typeface
Corporation.

Microsoft is a registered trade-
mark of Microsoft Corporation.

POSTSCRIPT is a trademark of
Adobe Systems Incorporated.

Simultaneously published in the
United States and Canada.

ISBN 0-201-17744-7
ABCDEFGHIJ-D0O-8987
First printing, May 1987

WARRANTY INFORMATION

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR

PURPSSE; ARE LIMIEB IN

DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESENTA-
TION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY,
ACCURACY, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS
TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLU-
SIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is
authorized to make any modifica-
tion, extension, or addition to this
warranty.

Some states do not allow the exclu-
sion or limitation of implied warran-
ties or liability for incidental or
consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

Contents

Figures and tables xiii

Preface xvii
About this manual xvii
What this manual contains xviii

Chapter 1 Overview 1

A word about other Apple IIGS firmware 2
Apple IIGS Toolbox 2
Applesoft BASIC 2
AppleTalk 3
Diagnostic routines 3
The role of firmware in the Apple IIGS system 3
Levels of program operation 4
Apple IIGS firmware 4
System Monitor firmware 4
Video firmware 5
Serial-port firmware 5
Disk II support 5
SmartPort firmware 5
Interrupt-handler firmware 6
Apple Desktop Bus microcontroller 6
Mouse firmware 6

Chapter2 Notes for Programmers 7

Introduction to the Apple IIGS 8

Microprocessor features 8

Microprocessor modes 9

Execution speeds 9

Expanded memory 9 ?
Super Hi-Res display 9 i
Digital sound synthesizer 10 :
Detached keyboard with Apple DeskTop Bus 10
Built-in I/O 11
Compatible slots and game I/O connectors 11

Environment for the firmware routines 11

Setting up the system 12
Save your environment 12
Get into bank $00 12
Set the D register to $0000 12
Set the DBR to $00 13
Save the value of the native-mode stack pointer 13
Select emulation mode 14

Returning to native mode 14
Restore the native-mode stack pointer 14
Restore your environment 14

Other requirements for emulation-mode code 15

Cautions about changing the environment 15
Stack and direct page 15
Data bank registers and e, m, and x flags 16
Speed- and Shadow-register changes 16
Language-card changes 16

General information 16

Apple 1IGS interrupts 16

Boot/scan sequence 17

Program bank register 17

Exchanging the B and A registers, XBA 18

Chapter3 System Monitor Firmware 19

Invoking the Monitor 20
Monitor command syntax 21
Monitor command types 21
Monitor memory commands 25
Examining memory 26
Examining consecutive memory locations 27
Changing memory contents 28
Changing one byte 28
Changing consecutive memory locations 29
ASCII input mode 30
ASCII filters for stored data 31
Moving data in memory 31
Comparing data in memory 33
Filling 2 memory range 34
Searching for bytes in memory 34
Registers and flags 35
The environment 36
Examining and changing registers and flags 36
Summary of register- and flag-modification commands 38

iv Contents

_

Chapter 4

Miscellaneous Monitor commands 39
Inverse and normal display 39
Working with time and date 40
Redirecting input and output 40
Changing the cursor character 41
Converting hexadecimal and decimal numbers 41
Hexadecimal math 42
A Tool Locator call 43
Back to BASIC 43
Special tricks with the Monitor 44
Multiple commands 44
Filling memory 45
Repeating commands 46
Creating your own commands 47
Machine-language programs 48
Running a program in bank zero 49
Running a program in other banks of memory 50
Resuming program operation 50
Stepping through or tracing program execution 50
The mini-assembler 51
Starting the mini-assembler 51
Using the mini-assembler 51
Mini-assembler instruction formats 54
The Apple 1IGS tools 55
The disassembler 55
Summary of Monitor instructions 57

Video Firmware 69

Standard 1/O links 70
Standard input routines 71
RDKEY input subroutine 71
KEYIN and BASICIN input subroutines 71
Escape codes 72
Cursor control 72
GETLN input subroutine 74
Editing with GETLN 75
Keyboard input buffering 75
Standard output routines 76
COUT and BASICOUT subroutines 76
Control characters with COUT1 and C3COUT1 76
Inverse and flashing text 78
Other firmware I/O routines 79
The text window 80

Contents \%

Chapter5 Serial-Port Firmware 81

Compatibility 82
Operating modes 83
Printer mode 83
Communications mode 83
Terminal mode 83
Handshaking 84
Hardware, DTR and DSR 84
Software, XON and XOFF 85
Operating commands 86
The command character 87
Command strings 87
Commands useful in printer and communications modes 88
Baud rate, nB 88
Data format, nD 88
Parity, nP 89
Line length, nN 89
Enable line formatting, CE and CD 89
Handshaking protocol, XE and XD 89
Keyboard input, FE and FD 90
Automatic line feed, LE and LD 90
Reset the serial-port firmware, R 90
Suppress control characters, Z 90
Commands useful in communications mode 91
Echo characters to the screen, EE and ED 91
Mask line feed in, ME and MD 91
Input buffering, BE and BD 91
Terminal mode, T and Q 91
Tab in BASIC, AE and AD 92
Programming with serial-port firmware 92
BASIC interface 93
Pascal protocol for assembly language 93
Error handling 95
Buffering 95
Interrupt notification 96
Background printing 97
Recharge routine 98
Extended interface 99
Mode control calls 100
GetModeBits 100
SetModeBits 100

Vi Contents

Buffer-management calls 101
GetInBuffer 101
GetOutBuffer 101
SetInBuffer 102
SetOutBuffer 102
FlushInQueue 102
FlushOutQueue 102
InQStatus 103
OutQStatus 103
SendQueue 103

Hardware control calls 104
GetPortStat 104
GetSCC 104
SetSCC 105
GetDTR 105
SetDTR 105
GetlntInfo 105
SetIntInfo 106

Chapter 6 Disk 1l Support 109
Startup 112

Chapter7 SmartPort Firmware 113

Locating SmartPort 114
Locating the dispatch address 115
SmartPort call parameters 116
SmartPort assignment of unit numbers 117
Allocation of device unit numbers 117
Issuing a call to SmartPort 120
Generic SmartPort calls 121
Status 121
Required parameters 122
SmartPort driver status 125
Possible errors 125
ReadBlock 126
Required parameters 126
Possible errors 126
WriteBlock 127
Required parameters 127
Possible errors 127
Format 128
Format call implementation 128
Required parameters 128
Possible errors 128

Contents vii

Control 129
Required parameters 129
Possible errors 130
Init 130
Required parameters 130
Possible errors 130
Open 131
Required parameters 131
Possible errors 131
Close 131
Required parameters 132
Possible errors 132
Read 132
Required parameters 133
Possible errors 133
Write 134
Required parameters 134
Possible errors 135
Device-specific SmartPort calls 138
SmartPort calls specific to Apple 3.5 disk drive 138
Eject 138
SetHook 138
Read Address Field 139
Write Data Field 139
Seek 139
Format 139
Write Track 139
Verify 140
ResetHook 140
SetMark 140
ResetMark 141
SetSides 141
Setlnterleave 141
SmartPort calls specific to UniDisk 3.5 142
Eject 142
Execute 142
SetAddress 143
Download 143
UniDiskStat 143
UniDisk 3.5 internal functions 144
Mark table 144
Hook table 145

viii Contents

UniDisk 3.5 internal routines 146
RdAddr 146
ReadData 146
WriteData 147
Seek 147
Format 147
WriteTrk 148
Verify 148
Vector 149
Memory allocation 150
ROM disk driver 152
Installing a ROM disk driver 152
Passing parameters to a ROM disk 152
ROM organization 154
Summary of SmartPort error codes 156
The SmartPort bus 157
How SmartPort assigns unit numbers 157
SmartPort-Disk II interaction 158
Other considerations 158
Extended and standard command packets 159
SmartPort bus flow of operations 159

Chapter 8 Interrupt-Handler Firmware 169

What is an interrupt? 171
The built-in interrupt handler 172
Summary of system interrupts 175
Interrupt vectors 177
Interrupt priorities 177
RESET 178
NMI 178
ABORT 179
COP 179
BRK 179
IRQ 180
Environment handling for interrupt processing 181
Saving the current environment 181
Going to the interrupt environment 182
Restoring the original environment 182
Handling Break instructions 183
Apple IIGS mouse interrupts 183
Serial-port interrupt notification 183

Contents X

Chapter9 Apple DeskTop Bus Microcontroller 185

ADB microcontroller commands 188
Abort, $01 188
Reset Keyboard Microcontroller, $02 188
Flush Keyboard Fuffer, $03 188
Set Modes, $04 189
Clear Modes, $05 189
Set Configuration Bytes, $06 190
Sync, $07 191
Write Microcontroller Memory, $08 191
Read Microcontroller Memory, $09 191
Read Modes Byte, $0A 191
Read Configuration Bytes, $0B 192
Read and Clear Error Byte, $0C 192
Get Version Number, $0D 192
Read Available Character Sets, $0E 193
Read Available Keyboard Layouts, $0F 193
Reset the System, $10 193
Send ADB Keycode, $11 193
Reset ADB, $40 194
Receive Bytes, $48 194
Transmit num Bytes, $49-$4F 194
Enable Device SRQ, $50-$5F 194
Flush Device Buffer, $60-$6F 195
Disable Device SRQ, $70-$7F 195
Transmit Two Bytes, $80-$BF 195
Poll Device, $CO-$FF 195

Microcontroller status byte 196

Chapter10 Mouse Firmware 197

Mouse position data 199
Register addresses—firmware only 200
Reading mouse position data—firmware only 200
Position clamps 201

Using the mouse firmware 202
Firmware entry example using assembly language 202
Firmware entry example using BASIC 203
Reading button 1 status 204

Mouse programs in BASIC 206
Mouse.Move program 206
Mouse.Draw program 207

Summary of mouse firmware calls 209

Contents

Pascal calls 210
PInit 210
PRead 210
PWrite 210
PStatus 210
Assembly-language calls 211
SETMOUSE, $C412 211
SERVEMOUSE, $C413 212
READMOUSE, $C414 212
CLEARMOUSE, $C415 212
POSMOUSE, $C416 213
CLAMPHOUSE, $417 213
HOMEMOUSE, $418 214 ‘
INITMOUSE, $419 214 ;

Appendix A Roadmap to the Apple lies Technical Manuals 215

The introductory manuals 218
The technical introduction 218
The programmer’s introduction 218
The machine reference manuals 219
The hardware reference manual 219
The firmware reference manual 219
The toolbox reference manuals 219
The programmer’s workshop reference manual 220
The programming-language reference manuals 220
The operating-system reference manuals 221
The all-Apple manuals 221

Appendix B Firmware ID Bytes 222
Appendix C Firmware Entry Points in Bank $00 224

Appendix D Vectors 258

Bank $00 page 3 vectors 259
Bank $00 page C3 routines 260
Bank $00 page Fx vectors 262
Bank $E1 vectors 264 :
IRQ.APTALK and IRQ.SERIAL vectors 266
IRQ.SCAN through IRQ.OTHER vectors 267 !
TOWRITERR through MSGPOINTER vectors 272

Contents Xi

Appendix E Soft Switches 276
Appendix F Disassembler/Mini-Assembler Opcodes 293

Appendix G The Control Panel 299

Control Panel parameters 299

Printer port 300

Modem port 301

Display 302

Sound 303

Speed 303

RAM disk 303

Slots 304

Options 304

Clock 306

Quit 306
Battery-powered RAM 306
Control Panel at power-up 307

Appendix H Banks $EO and $E1 308

Using banks $EO and $E1 310
Free space 310
Language-card area 310
Shadowing 310

Glossary 311
Index 321

Xii Contents

Figures and tables :

Chapter 1 Overview 1
Figure 1-1 Levels of program operation 4

Chapter 2 Notes for Programmers 7 1

Figure 2-1 Boot-failure screen 17
Figure 2-2 Accumulator for emulation and native modes 18
Table 2-1 Super Hi-Res graphic modes 10

Chapter 3 System Monitor Firmware 19
Table 3-1 Monitor commands grouped by type 23

Table 3-2 Commands for viewing and modifying memory 25
Table 3-3 Registers and flags 35
Table 3-4 Commands for viewing and modifying registers 37
Table 3-5 Miscellaneous Monitor commands 39
Table 3-6 Commands for program execution
and debugging 48
Table 3-7 Mini-assembler address formats 54
Table 3-8 Opcodes affected in immediate mode 57

Chapter 4 Video Firmware 69

Table 4-1 Escape codes and their functions 73

Table 4-2 Prompt characters 74 i
Table 4-3 Control characters with 80-column firmware off 77 {
Table 4-4 Control characters with 80-column firmware on 77 3
Table 4-5 Text format control values 78

Table 4-6 Partial list of other Monitor firmware

I/O routines 79

Chapter 5 Serial-Port Firmware 81

Figure 5-1 Handshaking when DTR/DSR option is turned on 84
Figure 5-2 Handshaking when DTR/DSR option is turned off 85
Figure 5-3 Handshaking via XON/XOFF 85

Figure 5-4 Summary of extended serial-port
buffer commands 107
Figure 5-5 Summary of extended serial-port

mode and hardware control commands 108

Xiii

Table 5-1 Baud-rate selections 88

Table 5-2 Data-format selections 88

Table 5-3 Parity selections 89

Table 5-4 Terminal-mode command characters 92

Table 5-5 Service routine descriptions and address offsets 93
Table 5-6 1/O routine offsets and registers

for Pascal 1.1 firmware protocol 94
Table 5-7 Interrupt setting enable bits 106

Chapter 6 Disk Il Support 109

Figure 6-1 Order of disk drives on Apple IIGS disk ports 110
Table 6-1 Disk II I/O port characteristics 111

Chapter 7 SmartPort Firmware 113
Figure 7-1 SmartPort ID type byte 115

Figure 7-2 Device mapping: configuration 1, derivation 1 118
Figure 7-3 Device mapping: configuration 1, derivation 2 118
Figure 7-4 Device mapping: configuration 2, derivation 1 119
Figure 7-5 Device mapping: configuration 2, derivation 2 119

Figure 7-6 Device mapping: configuration 2, derivation 3 119
Figure 7-7 SmartPort device subtype byte 124

Figure 7-8 Disk-sector format 140

Figure 7-9 UniDisk 3.5 memory map 150

Figure 7-10 The ROM disk 154

Figure 7-11 Block diagram of a 128K ROM disk 155

Figure 7-12 SmartPort control flow 159

Figure 7-13 SmartPort bus communications: read protocol 161
Figure 7-14 SmartPort bus communications: write protocol 162
Figure 7-15 SmartPort bus packet format 163

Figure 7-16 SmartPort bus packet contents 164

Figure 7-17 Bit layout of a 7-byte data packet 165

Figure 7-18 Transmitting a 1-byte data packet 165

Table 7-1 Register status on return from SmartPort 121
Table 7-2 Summary of standard commands

and parameter lists 136
Table 7-3 Summary of extended commands

and parameter lists 137
Table 7-4 UniDisk 3.5 gate array I/O locations 151
Table 7-5 UniDisk 3.5 IWM locations 151
Table 7-6 SmartPort error codes 156
Table 7-7 Data byte encoding table 164
Table 7-8 Standard command packet contents 166
Table 7-9 Extended command packet contents 167

Xiv Figures and tables

Chapter 8

Chapter 9

Chapter 10

Appendix A

Appendix B

Appendix E

Appendix G

Appendix H

Interrupt-Handler Firmware 169

Figure 8-1 Built-in interrupt handler 172
Table 8-1 Summary of system interrupts 175
Table 8-2 Interrupt vectors 177

Apple DeskTop Bus Microcontroller 185

Figure 9-1 Apple DeskTop Bus components 186

Table 9-1 Bit functions 189

Table 9-2 Keyboard language codes 190

Table 9-3 Status byte returned by microcontroller 196

Mouse Firmware 197

Figure 10-1 Button interrupt status byte, $77C 205
Figure 10-2 Mode byte, $7FC 205

Table 10-1 Apple IIGS mouse data bits 199

Table 10-2 Apple IIGS mouse register addresses 200
Table 10-3 Position and status information 205
Table 10-4 Mouse firmware calls 209

Roadmap to the Apple lies Technical Manuals 215 ;

Figure A-1 Roadmap to the technical manuals 217
Table A-1 Apple IIGS technical manuals 216

Firmware ID Bytes 222

Table B-1 ID information locations 222
Table B-2 Register bit information 223

Soft Switches 276

Table E-1 Symbol table sorted by symbol 291
Table E-2 Symbol table sorted by address 292

The Control Panel 299
Table G-1 Language options 305

Banks $EO and $E1 308
Figure H-1 Memory map of banks $EO and $E1 309

Figures and tables XV

Preface

This is the firmware reference manual for the Apple® IIGS™ computer. It is for
hardware designers and programmers who want to work with the system firmware in
lieu of using the Apple IIGS Toolbox routines to accomplish similar goals.

About this manual

As part of the Apple IIGS technical suite of manuals, the Apple IIGS Firmware
Reference covers the design and function of the firmware that drives the Apple IIGS. It
provides information about the entry points for the firmware and describes the
firmware functions and limitations.

% Note: None of the manuals in the technical suite stands alone. Other manuals in the
suite describe various tools to accomplish tasks that the firmware can also perform.
You should become familiar with the contents of the other Apple IIGS manuals
because for most applications, you may not need to directly use the firmware.

The audience for this manual includes programmers who want to work with the
firmware and application programmers who wish to convert or upgrade existing
applications for the Apple II, II Plus, Ile, or Ilc to take advantage of the new functions
available on the Apple IIGS.

% Note: Applications written explicitly for the Apple Ile can be booted on the
Apple IIGS, with no discernible difference in their operation.

This manual does not incorporate any descriptions of hardware; see the Apple IIGS
Hardware Reference for this information.

XVii

What this manual contains

Chapter 1, “Overview,” provides an overview of the Apple IIGS firmware.

Chapter 2, “Notes for Programmers,” provides information for those who are already
familiar with other Apple II computers.

Chapter 3, “System Monitor Firmware,” shows how to use the system Monitor to
examine and change memory or registers and to write and debug small machine-
language programs.

Chapter 4, “Video Firmware,” describes the text input and output facilities of the
Apple IIGS.

Chapter 5, “Serial-Port Firmware,” describes the features and functions of the built-in
serial port.

Chapter 6, “Disk II Support,” describes the firmware support for the Apple Disk II®
product.

Chapter 7, “SmartPort Firmware,” defines and describes the SmartPort firmware as
implemented on the Apple IIGS.

Chapter 8, “Interrupt-Handler Firmware,” describes in detail the method by which
various kinds of interrupts are processed.

Chapter 9, “Apple DeskTop Bus Microcontroller,” describes the firmware portion of
the Apple DeskTop Bus™. For a complete picture of this subsystem, you need this
manual, the Apple 1IGS Hardware Reference, and the Apple IIGS Toolbox Reference.

Chapter 10, “Mouse Firmware,” describes the Apple 1IGS mouse interface.

Appendix A contains a roadmap to the Apple IIGS technical manuals. Read this
appendix to determine which books you need to learn more about a programming
language, the Apple IIGS hardware, or some other aspect of the Apple 1IGS computer.

Appendix B contains a list of the firmware ID bytes. The information lets you
determine which machine in the Apple II family is running your program. By
examining these ID bytes, you can allow your program to take advantage of the features
available on a particular member of this family.

Appendix C describes the firmware entry points for the Apple IIGS, as well as the side
effects of each routine.

Appendix D describes the firmware vectors. By jumping to vectors instead of directly
to particular firmware routines, you can maintain compatibility between your program
and future releases of the Apple IIGS firmware.

Appendix E describes the soft switches that control various aspects of system
behavior. These switch locations and contents are provided for reference only. The
contents of the switches should be modified only by system tools.

XVili Preface

Appendix F lists the disassembler/mini-assembler opcodes. These will be useful to the |
machine-language programmer who uses the system Monitor to enter small programs 1
for quick tests. |

Appendix G describes the Control Panel options and defaults. 5
Appendix H describes the contents of memory banks $E0 and $E1.

A glossary follows the appendixes.

What this manual contains Xix ;

Chapter 1

Overview

This chapter gives a brief overview of the Apple IIGS firmware and how it relates to the
rest of the system software. The Apple IIGS firmware is composed of various routines
that are stored in the system’s read-only memory (ROM). The Apple IIGS firmware
routines provide the means to adapt and control the Apple IIGS system.

Routines for the following Apple 11GS firmware are covered in this manual:
system Monitor firmware

video firmware (I/O routines)

serial-port firmware (for character-at-a-time I/O)

Disk II support (slot 6 support)

SmartPort firmware (for block device I/O)

interrupt-handler firmware

Apple DeskTop Bus (ADB) microcontroller

O 0o oo ooogo o

mouse firmware

A word about other Apple lIGS firmware

Not all Apple IIGS firmware is discussed in this manual. The Apple IIGS ROM contains
other firmware, important enough to warrant separate manuals: the Apple IIGS
Toolbox (described in detail in the Apple IIGS Toolbox Reference), Applesoft BASIC
(described in the Applesoft BASIC Reference), and the AppleTalk® Personal Network
(described in Imside AppleTalk).

Apple lIGs Toolbox

The Apple IIGS Toolbox provides a means of easily constructing application programs
without necessarily using the firmware routines described in this manual. Programs
that you construct using the tools will conform to the Apple Human Interface
Guidelines. By offering a common set of routines that every application can call to
implement the user interface, the tools not only ensure familiarity and consistency for
the user but also help to reduce the application’s code size and development time.

Applesoft BASIC

The Apple IIGS also has Applesoft BASIC in ROM so that you can create and run your
own programs in BASIC.

2 Chapter 1: Overview

AppleTalk

AppleTalk is a local-area network that allows communication and resource sharing by
up to 32 computers, disks, printers, modems, and other peripheral devices.
AppleTalk consists of communication hardware and a set of communication
protocols. This hardware/software package, together with the computers, cables and
connectors, shared resource managers (servers), and specialized application
software, functions in three major configurations: as a small-area interconnecting
system, as a tributary to a larger network, and as a peripheral bus between Apple
computers and their dedicated peripheral devices.

Diagnostic routines

The system diagnostic routines are manufacturing test routines. No external entry
points are defined for system diagnostic routines at this time. Thus, diagnostic
routines are not documented in this manual.

The role of firmware in the Apple IIGS system

The firmware is that set of low-level routines that provides programmers with an
interface to the system hardware. The firmware, in turn, controls the display, the
mouse, serial input/output (I/O), and disk drives. Firmware programs, such as the
Monitor and the Control Panel, work directly with the system memory.

Traditionally, programmers have controlled hardware directly through their ,
application programs, bypassing any system firmware. The disadvantage of this ;
approach is that the programmer has to do a lot more work. More important,

bypassing the firmware increases the likelihood that the resulting program will be

incompatible either with other programs or with future versions of the computer. By

using the firmware interface, a programmer can maintain compatibility with current

and future releases of the system.

For most of the functions that the firmware entry points perform, there are equivalent
functions provided in the toolbox. The toolbox routines, in addition to performing
like functions, also save and restore system registers when they are called. Read
Chapter 2, “Notes for Programmers,” for more details about system register usage.

The role of frmware in the Apple lics system 3

Levels of program operation

You can think of the different levels of program operation on the Apple IIGS as a
hierarchy, with a hardware layer at the bottom, firmware layers in the middle, and the
application at the top. Figure 1-1 shows a hierarchy of command levels; in general,
higher-level components call on lower-level ones. (The levels are separated by lines;
the hardware components have heavy outlines.)

Application

Monitor Firmware Drivers Toolbox

Keyboard Display

Figure 1-1
Levels of program operation

Apple lIGS firmware

The following sections provide an overview of the Apple IIGS firmware described in
this manual.

System Monitor firmware

The system Monitor firmware is a set of routines that you can use to operate the
computer at the machine-language level. You can examine and change memory
locations, examine and change registers, call system routines, and assemble and
disassemble machine-language programs using the system Monitor firmware.

4 Chapter 1: Overview

Video firmware

Video firmware allows you to manipulate the screen in low-resolution mode and text
mode through your application programs and from the keyboard. Communication
between the keyboard and the video screen is controlled by firmware subroutines,
escape codes, and control characters. The video firmware provides on-screen
editing, keyboard input, output to the screen, and cursor-control facilities.

Serial-port firmware

The Apple IIGS serial-port firmware provides a means to allow serial communication

with external devices, such as printers and modems. The serial-port firmware

provides support for such options as hardware and software handshaking and

background printing. There are two serial ports, either of which can be configured as a

printer port or a modem port.

Disk Il support

The Apple IIGS Disk II firmware is a disk-support subsystem. It uses a built-in Integrated
Woz Machine (IWM) chip and accommodates Disk II (DuoDisk® or UniDisk™) drives.
Slot 6 is the standard Disk II support slot. The firmware that communicates with the
IWM at boot time provides support for booting Disk II-based software. Other handling
of Disk II devices is a function of whichever disk operating system is booted.

¢ SmartPort firmware

Disk II devices are directly manipulated by slot 6 control hardware. Intelligent devices,
by contrast, are not directly manipulated by hardware, but rather are controlled by
software-driven command streams. Such devices are labeled intelligent devices
because they have their own controllers, which can interpret these command streams.
The SmartPort firmware is a set of assembly-language routines that permit you to
attach one or more intelligent devices to the external disk port of the Apple IIGS
system. Using the SmartPort firmware, you can control these devices through
SmartPort calls, such as Open, Close, Format, ReadBlock, and WriteBlock.

Apple lies firmware 5

Interrupt-handler firmware

System interrupts halt the execution of a program or the performance of a function or
feature. The system contains built-in interrupt-handler firmware, a user’s interrupt-
handler entry point, and a means to notify the user when an interrupt occurs.

Apple DeskTop Bus microcontroller

The Apple DeskTop Bus (ADB) microcontroller is used to receive information from
peripheral units attached to the Apple DeskTop Bus. The ADB microcontroller polls
the internal keyboard, sensing key-up and key-down events as well as control keys, and
optionally buffers keystrokes for later access by the 65C816. In addition, the ADB
microcontroller acts as host for ADB peripheral devices, such as the detachable
keyboard and mouse. The ADB microcontroller has its own built-in set of
instructions, including Talk, Listen, SendReset, and Flush.

Mouse firmware

The Apple IIGS mouse firmware supplies the communication protocol for sensing the
current status of the mouse. The mouse firmware tracks mouse-device position data
and button status and provides entry points for assembly-language control.

6 Chapter 1. Overview

Chapter 2

Notes for
Programmers

This chapter contains information that will be useful to the experienced 6502
programmer as well as someone just beginning to use the Apple IIGS computer.

The Apple IIGS has many new features not found in previous Apple computers.
Programs written for the Apple Ilc or the Apple Ile will run on the Apple 1IGS, but do
not take advantage of these new features.

Among the new features of the Apple IIGS is a new set of registers, pseudoregisters, and
flags, collectively known as the environment. Before you change the environment
for the Apple IIGS system, read the following sections, which outline these new
features.

Intfroduction to the Apple lIGS

The Apple IIGS personal computer is a new Apple II with many high-performance
features. Highlights include

more powerful microprocessor with faster operation and larger memory
high-resolution RGB video for Super Hi-Res color graphics

multivoice digital sound synthesizer

detached keyboard with Apple DeskTop Bus connector

built-in I/O: clock, disk port, and serial ports with AppleTalk interface

0O 0O o0 o o o

compatible slots and game 1/O connectors

This list includes only the main features of the Apple 1IGS. For a comprehensive list of
features, refer to the Technical Introduction to the Apple IIGS.

Microprocessor features

The microprocessor in the Apple IIGS is a 65C816, a 16-bit design based on the 6502.
Among the features of the 65C816 are

O ability to emulate a 6502 8-bit microprocessor

O 16-bit accumulator and index registers

o rolocatable stack and zerg page (dircct page)

O 24-bit internal address bus for 16-megabyte memory space

8 Chapter 2: Notes for Programmers

Microprocessor modes

The 65C816 microprocessor can operate in two different modes: native mode, with
all of its new features, and 6502 emulation mode, for running programs written for 8-
bit Apple II computers.

If you are using emulation mode extensively, you will be using the firmware calls
described in this manual. If you are using native mode, you probably will want to use
the equivalent toolbox calls instead of directly calling the firmware. The toolbox calls
save and restore the environment for you.

Execution speeds

The microprocessor in the Apple IIGS can operate at either of two clock speeds: the
standard Apple II speed of 1 MHz and the faster speed of 2.8 MHz. When running
programs in RAM, the Apple IIGS uses a few clock cycles for refreshing memory,
making the effective processing speed about 2.5 MHz. System firmware, running in
ROM, runs at the full 2.8 MHz.

Expanded memory

Thanks to the 24-bit addresses of the 65C816, the Apple IIGS has a memory space
totaling 16 megabytes. Of this total, up to 8 megabytes of memory are available for
RAM expansion, and 1 megabyte is available for ROM expansion. For additional
information about memory, read the Technical Introduction to the Apple IIGS.

The minimum memory in the Apple IIGS is 256K. Programs written for the

Apple IIGS—that is, programs that run the 65C816 microprocessor in native mode,
thereby gaining the ability to addrcos morc than 128K Of HICHIOL y—~CdIl Us€ up Lo about

176K of the 256K. The rest is reserved for displays and for use by the system firmware.

The Apple IIGS also has a special card slot dedicated to memory expansion. All of the
RAM on a memory-expansion card is available for Apple IIGS application programs
that call the Memory Manager. Expansion memory is contiguous: Its address space
extends without a break through all of the RAM on the card. Expansion RAM on the

Apple IIGS is not limited to use as data storage; program code can run in any part of
RAM.

Super Hi-Res display

In addition to all the video display modes of the Apple Ilc and Apple Ile, the

Apple IIGS has two new Super Hi-Res display modes that look much clearer than
standard Hi-Res and Double Hi-Res. Super Hi-Res is also easier to program because it
maps entire bytes onto the screen, instead of 7 bits, and its memory map is linear.

Infroduction to the Apple lics 9

Used with an analog RGB video monitor, the new display modes produce high-
quality, high-resolution color graphics. Table 2-1 lists the specifications of the two
new graphics display modes.

Table 2-1
Super Hi-Res graphics modes
Resolution
Bits per Colors Colors Colors
Mode Horiz. Vert. pixel per line on screen possible
320 320 200 4 16 256 4096
640 640 200 2 16* 256* 4096

* Different pixels in 640 mode use different parts of the palette.

< Note: Pixel is short for picture element. A pixel corresponds to the smallest dot you
can draw on the screen.

Each dot on the Super Hi-Res screen corresponds to a pixel. Each pixel has either a
2-bit (640 mode) or a 4-bit (320 mode) value associated with it. The pixel values select
colors from programmable color tables called palettes. A palette consists of 16
entries, and each entry is a 12-bit value specifying one of 4096 possible colors.

In 320 mode, each pixel consists of 4 bits, so it can select any one of the 16 colors in a
palette. In 640 mode, each byte holds four 2-bit pixels. The 16 colors in the palette are
divided into four groups of 4 colors each, and successive pixels select from successive
groups of 4 colors. Thus, even though a given pixel in 640 mode can be one of only 4
colors, different pixels in a line can take on any of the 16 colors in a palette.

To further increase the number of colors available on the display, there can be as
many as 16 different palettes in use at the same time, allowing as many as 256 different
colors on the screen.

Digital sound synthesizer

In addition to the single-bit sound output found in other computers in the Apple II
family, the Apple IIGS has a new digital sampling sound system built around a special-
purpose synthesizer IC called the Digital Oscillator Chip, or DOC for short. Using
the DOC, the Apple IIGS can produce 15-voice music and other complex sounds
without tying up its main processor. Refer to the Apple IIGS Hardware Reference for
details about the sound system and the DOC.

Detached keyboard with Apple DeskTop Bus

The new detached keyboard includes cursor keys and a numeric keypad. The Apple
DeskTop Bus, which supports the keyboard and the Apple mouse, can also handle
other input devices such as joysticks and graphics tablets.

10 Chapter 2: Notes for Programmers

Built-in 1/O

Like the Apple IIc, the Apple IIGS has two built-in disk ports and two serial 1/O ports.
Programs can use the built-in ports and peripheral cards in slots. The built-in
AppleTalk interface uses one of the serial ports.

The Apple IIGS also has a built-in clock-calendar with a battery for continuous
operation.

Compatible slots and game 1/O connectors

In addition to the memory-expansion slot, the Apple IIGS has seven I/O expansion
slots like those on the Apple Ile. Most peripheral cards designed for the Apple II Plus
and the Apple Ile will work in the Apple IIGS slots. The Apple IIGS also has game I/O
connectors for existing game hardware.

Environment for the firmware routines

Many useful subroutines are listed in Appendix C, “Firmware Entry Points in Bank
$00.” All of these routines have one thing in common: To use them, the processor
must be set up to look and act exactly like a 6502 in all respects. You must therefore set
the operating environment to cause this transformation to happen. !

Important

This section contains the specific details about setting and restoring the ;
environment before calling and after returning from calling the firmware routines. ’
You must follow these requirements exactly, or your program will fail.

The specific operating environment requirements for all these routines are as follows:
0 d bit = 0 (decimal-mode bit)
e bit = 1 (emulation-mode bit) |

O

0 D register = $0000 (direct-page register)
O DBR register = $00 (data bank register, called B in Chapter 3) E
O PBR register = $00 (program bank register, called X in Chapter 3)

[}

S register = $01xx (stack pointer)

% Note: If you make tools calls instead of using the firmware directly, you will not have

to worry about the operating environment. The tool calls handle the environment
for you.

Environment for the firmware routines 11

Setting up the system

To correctly prepare the system for calling the firmware routines, you must take several
steps:

O Save your environment.

0 Get into bank $00: JSL Gump to subroutine long) to a routine in bank $00.
Set the D register to $0000.

Set the DBR to $00.

Save the value of the native-mode stack pointer, and set the stack pointer to the
value of the emulation-mode stack pointer.

O

O

O

O Select emulation mode: set the e bit to 1.

These steps make the 65C816 appear to be a 6502 microprocessor operating in its
normal environment. Now you can set up the machine registers with the parameters as
required by the particular firmware routine and execute a JSR (jump to subroutine).
These steps are explained in the sections that follow.

Save your environment

The environment is the complete set of machine registers and flags that your program
uses. Besides machine registers, the environment includes such things as processor
speed, read-only memory (ROM) bank, language-card bank, and random-access
memory (RAM) shadowing.

When you run the various firmware routines, the system will use the machine registers
for its own purposes. If you depend on a particular register having a specific value
when you finally return to your own code, then save that register’s contents on your
native-mode stack or wherever else you wish so that you can restore the register’s
contents before you return to your other program code. To determine which registers
each firmware routine uses or affects, see Appendix C, “Firmware Entry Points in Bank
$00.”

Get into bank $00

If you attempt to run the 65C816 in emulation mode in any bank other than bank $00,
no interrupt processing can take place. You enter program bank $00 by executing a JSL
(jump to subroutine long) to someplace in bank $00 (if you are not already there),
where the next steps are performed. This JSL sets the program bank register (K) to $00,
fulfilling that part of the firmware routine requirement. If you did not save your
environment before entering bank $00, now would be an equally good time to do so.

Set the D register to $0000

A 6502 expects its zero page (called the direct page for the 65C816 when operating in
native mode) to exist in the microprocessor address range of $00 to $FF. When the D
register is set to 0, the zero page gets positioned correctly for a 6502.

12 Chapter 2: Notes for Programmers

Set the DBR to $00

The DBR is the upper 8 bits of the 24-bit data address. The DBR must have a value of
$00 for the firmware routines to function.

Save the value of the native-mode stack pointer

When you switch to emulation mode, the upper 8 bits of your stack pointer will be lost.
Thus, this value must be saved somewhere so that it can be restored to its original value |
on exit from this routine. The most common technique is to save the value of the
entire native-mode stack pointer on the emulation-mode stack.

% Note: The main and auxiliary stack-page switches cannot be used in native mode.
Thus, when switching to emulation mode, you must use the main stack.

The routine that follows saves the native-mode stack pointer and correctly sets the
values for the direct-page register and the data bank register. If your program requires 1
other values for the direct-page and data bank registers, save these environment
variables (as well as other register values in your environment) so that you can restore
the values after returning from the firmware routine that you call. The EMULSTACK
routine can be appended to the beginning of your own firmware calling sequence. A
corresponding routine to restore the native-mode stack pointer is given in the section
“Returning to Native Mode” later in this chapter.

;Before entry, save YOUR environment!

EMULSTACK EQU $010100 ;Emulation stack pointer is saved here E
TOEMUL REP #$30 ;16-bit m and x 1
TSC ;Temporary save of native-mode stack pointer
TAX
SEP #3520 ;8-bit m
XBA ;Get stack pointer page
DEC A ;Is stack already in page 1?
BEQ ALREADYPGl ;If so, don't get emulation stack pointer
LDA #s$01 ;Set stack page to $01
XBA
LDA EMULSTACK ;Get emulation stack pointer
TCS ;Set emulation stack pointer
ALREADYPG1 PHX ;Save native-mode stack pointer
SEC ;Emulation mode
XCE ;Set emulation mode é
PEA $0000
PLD ;Set direct-page register to $0000
-LDA #0
PHA
PLB ;Set data bank register to §9Q

+Here continue with YOUR processing

Environment for the firmware routines 13

Select emulation mode

Setting the e bit to 1 puts the 65C816 into emulation mode and automatically sets the m
and x processor status bits to 1. The x bit forces the X and Y registers to be treated as
only 8 bits wide. The m bit forces the accumulator to be treated as only 8 bits wide.
This step also affects the size of the stack and the contents of the stack register.
Specifically, the value of the upper 8 bits of the stack pointer is forced to a value of
hexadecimal $01 (the same as the 6502). While you are in emulation mode, these
upper 8 bits never change. Thus, the size of the stack is restricted to 256 bytes.

Now you can set up the machine registers as required by the particular firmware routine
and JSR.

Returning to native mode

To return to native mode, you must perform a set of steps complementary to the
preceding steps that caused your program to enter emulation mode in the first place:

O Restore the native-mode stack pointer.

O Restore your environment (if you are within the bank $00 entry routine).

Then you can execute an RTL (return from subroutine long) to your point of origin
(assuming that you performed a JSL to enter this code in the first place). These two
return steps are explained in detail in the next two sections.

Restore the native-mode stack pointer

Return to native mode. The following example is the complement to the preceding
example that saved the native-mode stack pointer. Notice that this routine also returns
the processor to native mode (it sets the e bit to 0 and then sets the m and x bits to 0).

PHP ;Preserve firmware's c (carry) status

CLC ;Set native mode

XCE ;It's still in 8-bit

PLP ;Restore the carry flag

REP #$30 ;Set 16-bit

PLX ;Get native stack pointer from emulation stack
TXS ;Set the native-mode stack pocinter

;Now restore the rest of your environment!

Restore your environment

Restore all of your registers and flags to the values that your program expects to find on
return.

Assuming that you used a JSL in the code that saved your environment and your native-
mode stack pointer, you can now perform an RTL and resume execution of your
program.

14 Chapter 2: Notes for Programmers

Other requirements for emulation-mode code

The preceding example showed how to call firmware routines and specified that the
processor must be in emulation mode, running in bank $00, to call the firmware
routines. There may be other times when you want to use emulation mode from banks
other than bank $00, but you must observe other specific requirements. ,

When you run emulation-mode code in a bank other than bank $OO, interrupts must be
disabled.

% Note: For AppleTalk applications, you must be sure that interrupts are enabled for
at least 20 milliseconds out of every 1.1 seconds. For applications using the tick
counter, interrupts must not be disabled for longer than 16.67 milliseconds or ticks
will be lost.

When you are in a bank other than bank $00 with interrupts disabled, if you mix 6502
and 65C816 instructions, the 65C816 instructions will still function as documented. But
note that all 6502-equivalent instructions behave the same as a 6502 regarding direct-
page and stack-page wrapping. The new 65C816 instructions manipulate the stack and
direct page, but do not wrap on a page boundary. Thus, you must exercise care when
using these new stack- or direct-page instructions.

Cautions about changing the environment

If you write your own subroutines (or programs) that change some part of the operating
environment, be sure that your code, at exit, puts things back the way it found them at
entry. This is especially true of stack- and zero-page changes, data-bank-register
changes, m, e, and x changes, speed-register changes, ROM-bank changes, and
language-card changes.

Stack and direct page

For Apple II programs, the stack and the direct page (called the zero page for a 6502)
must be in their proper 6502 locations and the stack must be 256 bytes long. For
Apple IIGS programs, stack size and stack- and direct-page locations are at the
discretion of the application. (Call the Memory Mcnager to obtain a new zero-page
area).

When you are in native mode, you can locate the stack anywhere within bank $00. If the
stack is located- in memory at other than page 1 and the processor is switched to
emulation mode, the upper half of the stack pointer will be lost (set to $01). When the
processor is switched back to native mode, the upper half of the stack pointer will
remain set to page $01. To avoid losing the native-mode stack pointer when switching
to emulation mode, you must temporarily save the stack pointer so it can be restored.
Sample code for saving and restoring the native-mode stack value is shown in the
examples.

Environment for the firmware routines 15

Data bank registers and e, m, and x flags

If your subroutine changes the contents of the data bank register or the e, m, and x
flags, you should restore them to their original values. These registers affect not only
the locations to which the index registers X and Y point and the length of the A, X, and
Y registers; the contents of these registers also affect how the processor interprets its
instructions. One can easily imagine an incorrect flag or register value causing a
perfectly good program to fail.

Speed- and Shadow-register changes

Changing any of the bits in the Speed or Shadow register (see Chapter 3, “System
Monitor Firmware”) also affects how the system runs. (The Shadow-register bits of
interest and the speed-change bit are all accessible through the pseudoregister called
Quagmire. For assembly-language programming, you access these registers directly.
See the Apple IIGS Hardware Reference for more information.)

Language-card changes

If you change the active bank of the language card without restoring it on exit from your
code, you again risk ruining another programmer’s code. For example, the other
programmer might have executed a JSR or JSL out of some code in a ROM bank or a
particular bank of the language card. The return address of that routine is on the stack
and points to the return address within that same bank of ROM or the language card. If
your routine changes banks without restoring them to the original values upon exit, the
system will fail.

General information

This section contains other general information useful in creating 65C816 programs
for the Apple 1IGS.

Apple lIGs interrupts

The Apple IIGS firmware provides improved interrupt support, very much like the
enhanced Apple Ile interrupt support. Neither machine disables interrupts for
extended periods.

The main purpose of the interrupt handler is to support interrupts in any memory
configuration. This is done by saving the machine’s state at the time of the interrupt,
placing the Apple IIGS in a standard memory configuration before calling your
program’s interrupt handler, and then restoring the original state when your
program’s interrupt handler is finished. (See Chapter 8, “Interrupt-Handler
Firmware,” for more information.)

16 Chapter 2: Notes for Programmers

Boot/scan sequence

The boot/scan sequence is initiated by selecting Startup: Scan from the Control Panel
Slots menu. When the selection is made, the Apple IIGS starts at slot 7 and tests each
slot for a boot device; the first device found is booted. The Apple IIGS starts its scan at
the slot selected, ignoring all slots with a higher number, and works down to slot 1. If
no boot devices are in the slots, the screen displays the message shown in Figure 2-1
(the apple moves back and forth across the screen).

Check Startup Device
@

Figure 2-1
Boot-failure screen

If slot 7 is enabled for an external device, the scan will proceed as just described.
However, if slot 7 is set to AppleTalk and if the startup slot is set to slot 7, the firmware
will try to boot AppleTalk. If RAM Disk or ROM Disk is selected, the SmartPort
firmware will be activated and the system will attempt to boot from the RAM disk or
ROM disk (see Chapter 7, “SmartPort Firmware”).

Program bank register

The 65816 program bank register wraps within a 64K bank boundary. Data retrieval and
storage, however, do not wrap within a 64K bank. This means that a program that
executes at the top of a bank continues to execute at the bottom of the same bank, even
between opcode and operand within a single instruction. Further, data retrieval and
storage at the top of a bank simply roll over into the bottom of the next bank and
continue as if no bank had been crossed. This same operation also occurs with
indexed instructions.

Important

You must exercise care when writing code that deals directly with state-
dependent hardware. The cycle-by-cycle operations of the 65C816 emulation
mode and the 65C816 native mode differ. This behavior has to do with indexed
instructions. In one mode, a false read occurs at a given cycle, and in the other
mode, a false write occurs. This difference can cause problems if soft switches and
hardware expect one operation and get another.

General information 17

Exchanging the B and A registers, XBA

The A register (called the C register in native mode) is a 16-bit register used in both
native and emulation modes. In native mode, all 16 bits are used; in emulation mode,
8 bits are used for the A register and 8 bits are used for the B register (see Figure 2-2).

C (A) Native mode

B A
Emulation mode
Figure 2-2

Accumulator for emulation and native modes

Some programmers with 6502 experience might see the XBA instruction as a quick way
to save the current contents of the A register while running in emulation mode. Then
they might assume that it is appropriate to jump to system routines (that have to be
executed from emulation mode anyway) and return, restoring the A register from B by
another XBA. However, the contents of the B register (the old 8-bit accumulator
value) will not be valid on return from any firmware routine. Thus, do not transfer
control to any system code prior to restoring the A register with the following XBA. If
you do, it is at your own risk. Although current documentation for the firmware entry
points occasionally may show that the contents of the B register are preserved, this will
not necessarily hold true for later releases of the firmware.

For example, the following code works in 8-bit mode:

XBA ;Preserve A

LDA FLAG ;Do something with A
LSR ;Move LSB to carry
XBA ;Restore A

The following code does not work:

XBA ;Preserve A

LDA #A

JSR COUT ;Control is transferred
XBA ;Restore A

The A in the first line is not the same as the A in the fourth line.

18 Chapter 2: Notes for Programmers

—

Chapter 3

System Monitor
Firmware

19

This chapter describes the Apple IIGS system Monitor firmware, a low-level,
command-driven program that lets you examine the machine state as well as create
and test small machine-language programs. A professional developer will likely use a
sophisticated assembler and debugger in addition to the system Monitor firmware.

Note that when you use the Monitor to write machine-language programs, you can use
the Monitor entry points listed in Appendix C, “Firmware Entry Points in Bank $00,”
to make your job easier. Also, if you use the disassembler, you will be interested in the
table of disassembler opcodes in Appendix F, “Disassembler/Mini-Assembler
Opcodes.”

The system Monitor firmware is a program that you can use to create and test your own
machine-language programs for the Apple IIGS. From the Monitor, you can create
programs that utilize various system-resident subroutines (a summary of which is
contained in Appendix C, “Firmware Entry Points in Bank $00™). When you create
your own programs or use the Monitor to examine programs that others have created,
various features of the Monitor firmware assist you in your task.

The Apple IIGS Monitor provides commands that

O manipulate memory by examining it; by entering changes in either ASCII or
hexadecimal form; by moving, comparing, or filling blocks of memory; and by
searching for specified patterns

view and change the execution environment (microprocessor registers and flags)
execute programs from the Monitor
step through and trace program execution (hooks only; no code in current ROM)

0o o o g

perform miscellaneous tasks such as setting the display to inverse or normal video,
displaying or setting the time and date, redirecting input and output, performing
hexadecimal arithmetic, returning to BASIC via cold or warm start

invoke the mini-assembler

0

O invoke the disassembler

Invoking the Monitor

The system Monitor resides in read-only memory (ROM) beginning at location
$FF69, or ~151. To invoke the Monitor, you issue a Call statement to this location from
the keyboard or from a BASIC program. When the Monitor is running, its prompt
character (*)‘appears on the left side of the display screen, followed by a cursor. To
use the Monitor, type

Call -151 Return

The prompt character and the cursor (a flashing blank space) appear:

*

20 Chapter 3: System Monitor Firmware

Monitor command syntax

You enter all Monitor instructions in the same format: Type a line on the keyboard
and press Return. The Monitor accepts the line using the I/O subroutine GETLN. A
Monitor instruction can be up to 255 characters, followed by a carriage return.
(GETLN is described in Chapter 4, “Video Firmware.”)

A Monitor command can include four kinds of information: memory-bank number,
addresses, data values, and command characters. You type addresses, memory-bank
numbers, and data values in hexadecimal notation.

The microprocessor in Apple I computers prior to the Apple 1IGS could address
memory only in an address range from 0 to 65,535. The Apple IIGS, on the other
hand, can address up to 256 banks of 65,536 memory locations each. Thus, there is a
need for a memory-bank address qualifier for the Monitor commands. You will see
the complete address represented as { bank/ address}, where bank is to be specified
as two hexadecimal digits and address as four hexadecimal digits.

When the command you type calls for an address, the Monitor accepts any group of
hexadecimal digits, automatically providing leading zeros to fill out the width of the
field of digits.

Monitor command types

There are two distinct types of Monitor commands: commands that perform an
operation (such as examining or filling memory) and commands that change a
register value.

For commands that perform an operation, each command you type consists of one
command character, usually the first letter of the command name. When the
command is a letter, it can be either uppercase or lowercase. The Monitor recognizes
46 different commands. Some of them are punctuation marks, some are letters, and
some are control characters.

% Note: Although the Monitor recognizes and interprets control characters typed on
an input line, control characters do not appear on the screen.

For commands that affect the contents of a register, each command you type consists
of a value and a register name. For register names, the Apple IIGS Monitor does
require that the register name be entered using the proper case (uppercase or
lowercase). The syntax of a register-modifying command is

{value}={ register)

Monitor command types 21

When you use a register-display command, the appropriate case for you to use to
modify the register contents is shown in the display for each register. Be certain to
note whether the register name is uppercase or lowercase and to use the correct case
when setting a register value.

Table 3-1 lists the Monitor commands and their syntax grouped by type. In Table 3-1
and in the rest of this chapter, the command formats often specify addresses from
which data is obtained or to which data is sent. The source and target addresses take
the form

bank/ address

where bank is an optional bank number (one or two hexadecimal digits) and address
is the address (one to four hexadecimal digits). The bank number, if present, is
separated from the address by a forward slash (/) character. To make the command
formats more understandable, several terms are introduced here, each of which may
be used in lieu of bank/ address. Note that each of these terms uses exactly the same
format: an optional bank number and the address. The purpose of these substitute
forms is to make the command formats (especially within tables) easier to understand
at a quick glance.

The following terms may be used:

destination An address (with optional bank) that serves as a data destination

Jfrom_address An address (with optional bank) at one end of a range of addresses

to_address An address (with optional bank) at the other end of a range of
addresses

start_address An address (with optional bank) at which the Monitor will start an
operation

val An 8-bit (1-byte) value specified as two hexadecimal digits

vall6 A 16-bit (2-byte) value specified as four hexadecimal digits

val64 A value expressed as up to eight hexadecimal digits

vall0 A value expressed as decimal digits

mm/ dd/yy Three 8-bit values separated by forward slashes

hh:mm:ss Three 8-bit values separated by colons

22 Chapter 3: System Monitor Firmware

Table 3-1

Monitor commands grouped by type

Command type

Command format

Viewing and modifying memory
Display single memory location
Display multiple memory locations
Terminate memory-range display
Modify consecutive memory

Move data in memory

Verify memory contents

Fill memory (zap)

Pattern search (specified in four
ways; any or all forms may be
combined in a single search
request)

Viewing and modifying registers
Examine registers

Modify accumulator

Modify X register

Modify Y register

Modify D register

Modify DBR register (bank)
Modify program bank register
Modify stack pointer

Modify processor status
Modify machine-state register
Modify Quagmire register
Modify 16/8-bit accumulator mode
Modify 16/8-bit index mode

ML

Modify native/emulation mode
Modify language-card bank
Modify ASCII filter mask

{from_address)

{from_address} . {to_address)

Control-X

{destination} : {val}y {val} {"literal ASCII }
{"flip ASCII' } {val)

{destination} <{ from_address} . { to_address}M
{destination} <{ from_address} . { to_address}V
{val}<{from_address} . (to_address}Z

\ {val}\<{from_address} . {to_address}P

M T 123t y\<{ from_address} . {to_address)P

\ { "literal ASCII"} \< { Jrom_address) . {to_address)p
\{vall16}\< { from_address} . { to_address}P

Control-E
{vall6)=A
{val16}=X
{vall6}y=Y
{vall16}=D
{val}=B
{val}=K
{vall6} =S
{val} =P
{val}=M
{val}=Q
{val}=m
{val}=x
{val}=e
{val}=L
{val}=F

(continued)

Monitor command types

23

B e A e omis e s emesmmot irmpripsie's

§
!

Table 3-1 (continued)

Monitor commands grouped by type

Command type

Command format

Miscellaneous
Begin inverse video
Begin normal video
Change time and date
Display time and date
Redirect input links
Redirect output links
Change screen display to text
Change cursor
Convert decimal to hexadecimal
Convert hexadecimal to decimal
Perform hexadecimal math
Add
Subtract
Multiply
Divide
Jump to cold-start BASIC
Jump to warm-start BASIC
Jump to user vector
Quit Monitor

Program execution and debugging
Go (begin) program in bank $00
Execute from any memory bank
Restore registers and flags
Resume execution

Perform a program step
Perform a program trace
Disassemble (list)

Enter mini-assembler

I
N

=T=mm/dd/yy hh: mm:ss

=T

{ slot} Control-K
{ slot} Control-P
Control-T

Control-A {new cursor_character}

={vall0}
{valG4) =

{val64}y+ {val64}
{val64} - {val64}
{val64} * {val64}
{val64} _{val64}
Control-B
Control-C
Control-Y

Q

{start_address}G
{start_address}X
Control-R

{start_address}R
{start_address}S
{start_address}T

{start_address}L
!

24 Chapter 3: System Monitor Firmware

Monitor memory commands

The Monitor commands that directly affect memory are discussed in this section.
These include commands to examine and change memory locations, search for
specific combinations of memory contents, change memory contents individually or
in blocks, and compare memory blocks. The Monitor presents memory dumps in
both ASCII and hexadecimal formats. You can use either notation to enter your
requests for changes to memory.

When you use the Monitor to examine and change the contents of memory, the
Monitor keeps track of the address of the last location whose value you inquired about
(called the last-opened location) and the address of the location that is to have its s
value changed next (called the next-changeable location). In addition, once you !
have specified a bank number in one of your instructions, the Monitor continues to use
that bank number with all other instructions until you explicitly change it.

In the paragraphs that follow, the memory-contents displays are based on what you
would see if you were using the display in 80-column mode. When in 40-column
mode, the Apple IIGS Monitor dumps memory 8 bytes per line. When in 80-column
mode, the Apple IIGS Monitor dumps memory 16 bytes per line.

Table 3-2 lists the Monitor memory commands.

Table 3-2
Commands for viewing and modifying memory
Command type Command format E
Display single memory location {from_address} {
Display multiple memory locations {from_address} . {to_address} ‘
Terminate memory-range display Control-X i
Modify consecutive memory {destination} : {val} {val} {"literal ASCII"} !

{"flip ASCIT'} {val} i
Move data in memory {destination} < { from_address} . {to_address}M 1§=
Verify memory contents {destination}<{ from_address} . { to_address}V
Fill memory (zap) {val}<{from_address} . {to_address}Z {
Pattern search (specified in four \ {val}\<{from_address} . {to_address}P
ways; any or all forms may be \ { " 123" }\<{ from_address} . {to_address}P
combined in a single search \ (" literal ASCIT"}\<{ from_address} . {to_address}P :
request) \ {val16} \< { from_address} . {to_address}P

Monitor memory commands 25 !

Examining memory
The syntax required to display a single memory location is

{ bank/address) Return

If the Monitor is already examining the bank desired, you don’t have to include the
bank number in the instruction. Simply type the address and press Return. However, if
you're not sure which bank the Monitor is in, include the bank number as shown in the
example. The Monitor responds with the bank and address you typed

(bank/address), a colon, and the hexadecimal contents of the location. For
example, to examine memory location hexadecimal $1000, next to the Monitor
prompt (*) type

*00/1000 Return
The bank and address are displayed as well as the contents of address $1000:
00/1000:20-

% Note: Dollar signs ($) preceding addresses that appear in running text signify that
the addresses are in hexadecimal notation; however, dollar signs are ignored by
the Monitor and must be omitted when typing instructions. If location $1000 had
contained ASCII code, the ASCII equivalent would be displayed on the far right of
the screen, as the following example shows:

*1000 Return

(Notice that the bank address was not entered because you know that you are in bank
$00.) The result is

00/1000:41-A

< Note: ASCII codes are decoded in the rightmost 8 spaces of your display. Printable
ASCII characters are displayed as normal characters; nonprintable characters are
displayed as periods (.). If you are using the Monitor in 80-column mode, the
ASCII characters will take up the rightmost 16 spaces instead of 8, and 16 sets of
hexadecimal digit pairs corresponding to the byte values stored in the displayed
memory range.

When you change the contents of memory, the Monitor saves the address of the last
location in which you changed the contents and the address of the next location to be
changed—in other words, the last-opened location and the next-changeable
location.

26 Chapter 3: System Monitor Firmware

Examining consecutive memory locations

You may want to examine a block of memory locations, such as from $1000 to $1007.
Simply type the starting address, a period, and the ending address and then press
Return:

*1000.1007 Return
The contents of the memory locations are displayed as follows:

00/1000:41 42 43 44 45 55 00 00 -ABCDEU..

*

If you type a period (.) followed by an address and then press Return, the Monitor
displays a memory dump: the data values stored at all the memory locations from the
one following the last-opened location to the location whose address you typed
following the period. The Monitor saves the last location displayed as both the last-
opened location and the next-changeable location. In these examples, the amount of
data displayed by the Monitor depends on the difference between the address of the
last-opened location and the address after the period.

00/1000:41-A

*,100B Return

00/1001:41 42 43 44 45 55 00 00 -BCDEU. .
00/1008:51 52 53 54 -PQRS

*

When the Monitor performs a memory dump, it starts at the location immediately
following the last-opened location and displays that address and the data value stored
there. It then displays the values of successive locations up to and including the
location whose address you typed, but shows only up to 8 (or 16) values on a line.
When it reaches a location whose address is a multiple of 8 (or 16), that is, one whose
address ends with an 8 (or if 16, an address that ends with a 0), it displays that address
as the beginning of a new line and then continues displaying more values.

If you have selected a large memory range to display and you wish to halt the display
and resume entering other Monitor commands, press Control-X. This terminates the
memory-range display.

After the Monitor has displayed the value at the location whose address you specified
in the command, it stops the memory dump and sets that location as both the last-
opened location and the next-changeable location. If the address specified in the
input line is less than the address of the last-opened location, the Monitor displays
only the address and the value of the location following the last-opened location.

Monitor memory commands 27

| |

Changing memory contents

The previous section showed you how to display the values stored in the Apple IIGS
memory system; this section shows you how to change those values. You can change
any location in RAM and you can also change the soft switches and output devices by
changing the contents of the memory locations assigned to them.

Warning

Use these commands carefully. If you change the contents of memory in any
area used by the Apple lics firmware or Applesoft, you may lose programs or data
stored in memory. You can find a map showing the memory use by various parfs
of the system software in the Apple lics Hardware Reference.

Changing one byte

Previous commands kept track of the next-changeable memory location; other
memory commands make use of that location. In the next example, you open location
$1000 and type a colon (:) followed by a value:

*1000 Return
00/1000:50 -P
*:54 Return

This entry changes the contents of the opened location to the value you requested. To
verify the changes, again type

*1000 Return
The Monitor now displays

00/1000:54 -T

*

You can combine opening a location and changing its contents into a single operation
by specifying the address, a colon, and the contents on a single command line:

*1000:41 Return

As before, you can verify that the system obeyed your command by typing
*1000 Return

The Monitor now displays

00/1000:41 - A

*

28 Chapter 3: System Monitor Firmware

. You can change a byte to an ASCII code using the character instead of the numeric
. value. Use the same syntax as before, but enclose the ASCII characters in double

§, quotation marks, as follows:

i

*1000:"a"
To verify that the location has been changed, type i

*¥1000 Return

Again, the bank/ address and location contents are displayed.

00/1000:El-a

*

A SR SR

! Note that when you change the contents of a programmable memory location, the new

. value that you provide entirely replaces the value that was in that location to begin

with. This new value will remain there until you replace it with another value or until }

you turn off the computer. Further information about this operation is provided in the %
|
f
i

section “ASCII Filters for Stored Data” later in this chapter. (If you are using the ASCII
input mode, the filter will affect the data that you have entered.)

Changing consecutive memory locations |

You don’t have to type a separate command with an address, a colon, a value, and a
Return for each location you want to change. You can change the values of many
memory locations at the same time by typing only the initial address and a colon,

then all the values separated by spaces, and then Return. The only limitation is that the
total length of the string, including the address, colon, all of the values and spaces, !
and the Return, must not exceed 255 characters. Using this method, you could change :
100 or more locations in a single entry line. Note that you don’t need to type leading

zeros, a feature that provides even more possible data entry locations in a single

command line.

The Monitor stores the consecutive values in consecutive locations, starting at the
location whose address you typed. After it has processed the string of values, it takes
the location following the last-changed location as the next-changeable location.
Thus, you can continue changing consecutive locations without typing an address on
the next input line by simply typing another colon, a space, and more values. In the
following examples, you first change some locations and then examine them to verify
the changes.

*1000:56 57 58 59 60 61 62 63 64 65 Return

The contents of locations $1000 through $1009 have been changed, as you can see by
examining those locations: |

1000.1009 Return

Monitor memory commands 29

As before, the memory-bank number and the starting memory address precede the
values you typed, and the ASCII values are displayed at the right.

00/1000:56 57 58 59 60 61 62 63 64 65-VWXY'abcde

*

In the next example, you use the colon to continue a data entry, as noted in the
preceding description:

*1000:41 42 43 Return

*:3130 32 33 Retumn

*1000.1006 Return

00/1000:41 42 43 30 31 32 33-ABC0123

Note that you can enter data in either single-byte (one or two hex digits) or double-
byte (three or four hex digits) or triple-byte (five or six hex digits) or quadruple-byte
(seven or eight hex digits) units. When a double-byte quantity is entered, the Monitor
stores the bytes in low-byte, high-byte sequence (the reverse of the way you entered
them), as demonstrated in the example (3130 entry) above. This is useful when you are
specifying address entries for the mini-assembler. You will find more of this kind of
entry demonstrated in the section “The Mini-Assembler” later in this chapter.

ASCIl input mode

You can enter ASCII data in two different ways. One way is called literal ASCII; the
other way is called flip ASCIL

< Note: The ASCII filter will affect the final form of your data when ASCII input mode

is used. See the section “ASCII Filters for Stored Data” later in this chapter for more
information.

To enter data in literal ASCII format, type the character string you wish to enter
between a pair of double quotation marks. The characters you enter are stored in
ascending order in the same sequence in which you typed them. In some cases, you
might want to store the characters in reverse order, with the last character stored at the
lowest memory address. You use flip ASCII for this entry mode. Flip ASCII is entered
by using single quotation marks in place of double quotation marks. Note, however,
that flip ASCII is limited to four characters maximum. The following example
demonstrates literal ASCII data entry:

1000:"ECHO" Return
1000.1003 Return
00/1000: C5 C3 C8 CF - ECHO

The next example demonstrates flip ASCII data entry:

1000; "ECHO' Return
1000.1003 Return
00/1000: CF C8 C3 C5 - OHCE

30 Chapter 3: System Monitor Firmware

ASCII filters for stored data

When you perform any manipulation of ASCII code, you must consider the literal

ASCII format of the stored data. For example, do you want the data to be stored in

. ASCII format with the most significant bit set (to be compatible with the I/O firmware
for display purposes) or directly in true ASCII format, where what you type exactly !
follows the ASCII standard? The format can be changed using any filters provided by |
the Monitor. The filter can be any hex value from $00 (maximum filtering) to $FF (no !
filtering, that is, all source bits pass through the filter unmodified). ‘

The filter formats are as follows:

Entry Filter Format of stored data

"abcdefghijkl" FF (default filter) E1 E2 E3 E4 ES E6 E7 E8 E9 EA EB EC i
7F 61 62 63 64 65 66 67 68 69 6A 6B 6C]
3F 21222324 2526272829 2A 2B 2C 1

The syntax for changing filters is
{filter-value) =F Return

For example, if you type

TF=F Return

the system uses the 7F filter format.

This means that when you search for any pattern in memory, you must know which
format is used. If FF is used, abc appears in hex as E1 E2 E3; if 7F is used, abc appears
as 61 62 63. Thus, if you perform a pattern search for E1 E2 E3 and the format used was
7F, you will not find the correct pattern.

The input ASCII character is ANDed with the filter value and then stored in the search
buffer.

Moving data in memory

You can copy a block of data stored in a range of memory locations from one area in
memory to another by using the Monitor’'s Move (M) command. To move a range of
memory, you must tell the Monitor both where the data values are now situated in
memory (the source locations) and where the data values are to go (the destination
locations). You give this information to the Monitor by providing three addresses: the
address of the first location in the destination and the addresses of the starting and
ending locations within the source range. You specify the starting and ending
addresses of the source range by separating them with a period. You separate the
destination address from the range addresses with a less-than character (<), which you
may think of as an arrow pointing in the direction of the move. Finally, you tell the
Monitor that this is a Move command by typing the letter M (in either lowercase or
uppercase).

Monitor memory commands 31

The format of the complete Move command looks like this:
{destination) <{from_address) . {to_address)M

To move data from $1000 through $1009 to locations beginning at $2000, type the
destination, the starting address, and the ending address followed by the letter M.
Note that as you type the address values, the words in braces and the braces themselves
are replaced by the hexadecimal addresses that you wish to use. The example uses
bank $00 as both the source and the destination. You can, however, specify the
complete bank address within either of the source addresses or in the destination
address, because everywhere that the Monitor requires an address, it will also find the
combination of {bank/address} acceptable as well.

*2000<1000.1009M Return
*

Now examine the data you moved by using the examine procedure. Type the starting
address and the ending address and press Return:

*2000.2009 Return ;

The data returned to the display looks the same as it did when you examined locations
$1000 through $1009:

00/2000:CF C8 C3 C5 60 61 62 63 64 65-OHCE'abcde

*

The Monitor moves a copy of the data stored in the source range of locations to the

destination locations. The values in the source range are left unchanged. The Monitor

remembers the last location in the source range as the last-opened location and the

first location in the source range as the next-changeable location. If the second

address in the source range is less than the first, then only one value (that of the first !
location in the range) will be moved. ;

If the destination address of the Move instruction is inside the source range of
addresses, then strange (and sometimes wonderful) things happen: The locations |
between the beginning of the source range and the destination address are treated as a
subrange, and the values in this subrange are replicated throughout the source range.
The section “Special Tricks With the Monitor” later in this chapter provides an :
interesting application of this feature.

32 Chapter 3: System Monitor Firmware

I

Comparing data in memory

You can use the Verify (V) command to compare two ranges of memory using the
same format you use to move a range of memory from one place to another. In fact, a
Verify command can be used immediately after a Move command to make sure that
the move was successful.

The Verify command, like the Move command, needs a range and a destination. The ‘
syntax of the Verify command is identical to the Move command, except that you type '
a V in place of an M: 5

{destination_address) < ({starting address) . {ending address)v

The Monitor compares the values in the source locations with the values in the
locations, beginning with the destination address. If any values don't match, the ;
Monitor displays the first address at which a discrepancy is found and the two values]
that differ. If you enter the example shown for the Move instruction and then change]
one byte at the destination, you can use the Verify command to find the discrepancy. |
Change the first location to hex 41 (it was hex 56) and then use the Verify command: %

4

*¥2000:41 Return
¥2000<1000.1009V Return

If there are no discrepancies, you will not get a display. In this example, because you |
will have caused a discrepancy, the following is displayed:

00/1000:56 (41) ——S$2000

$1000

&
|
Location $1000 contains 56; location $2000, however, contains 41. *
#
:

The Verify command leaves the values in both ranges unchanged. The last-opened
location is the last location in the source range, and the next-changeable location is g
the first location in the source range, just as in the Move command. If the ending
address of the range is less than the starting address, the values of only the first i
locations in the source and destination will be compared. Like the Move command, E
the Verify command also does strange things if the destination address is within the
source range. Again, see the section “Special Tricks With the Monitor” later in this

chapter.

Monitor memory commands 33

Filling a memory range

You can fill a memory range with a specific value by using the Monitor Zap (Z)
command. You tell the Monitor where and how to zap memory by providing three
pieces of information: the value to fill, the starting address, and the ending address.
You separate the value from the starting address by using a less-than character (<).
You separate the beginning and ending addresses of the range with a period. The
syntax for Zap is

{value)} < { starting address) . {ending address)z Return

When Zap operates, the value you have selected is filled into the entire range,
including the starting and ending addresses.

Searching for bytes in memory

The Pattern Search (P) command allows you to search for one or more bytes
(hexadecimal values, ASCII characters, or a combination of the two) in a range of
memory. The syntax of the pattern search instruction is as follows:

*\ {value(s) or "literal ASCII"™ or ' flip ASCII' }\<({starting address.ending address)p

The byte values are entered end to end with no intervening spaces. This format is
required by the Pattern Search command because you are looking for a string of
values. Note that you must enter leading zeros. For example, a search for the string of
characters 0D followed by 0A between locations 1200 and 1400 would be entered as

*\0D O0A\<1200.1400P Return

If you are looking for a string of characters, you can enter the characters delimited by
double quotation marks as shown here:

*\"Mr. Goodbar"\<1200.1400P Return

If the pattern is found, the beginning location is displayed. For example, if the pattern
is located with its first byte at location $1300, the following is displayed:

00/1300:41 -A

*

34 Chapter 3: System Monitor Firmware

v

. Registers and flags]

The Apple IIGS system uses a number of registers and control flags (bits) to perform its
| various functions. Table 3-3 lists these registers and flags.

. Table 3-3 1

. Registers and flags 4

Register Flag 4

A Accumulator M Machine state

| Y Indexregister Q Quagmire siale |

! X Index register m Accumulator mode |
S Stack pointer x Index mode ‘
D Direct zero page e Emulation mode i
P Processor status L Language-card bank g
B Data bank
K Program bank i

The A, X, and Y registers are the workhorses of the assembly-language programmer.
The P register contains all of the system status flags. The D register is the 65816 direct-
page register that controls the placement of the zero page of the processor. The S

register is the stack pointer. The K register contains the upper 8 bits of the program y
counter because the 65816 operates anywhere in a 24-bit address space. .

In books that describe programming for the 65816, the upper 8 bits of the accumulator
are sometimes called the B register. These programming books also refer to the 16-bit
accumulator as the C register, the program bank register as PBR (the upper 8 bits of the]
program counter), and the data bank register as DBR (the upper 8 bits applied to the X 1
and Y registers). For convenience, the Monitor renames these registers as follows:

D The Monitor B register display shows the DBR contents.
O The Monitor K register display shows the PBR contents.

0 The Monitor A register display shows the 16-bit accumulator contents, whether 8 or
16 bits.

0 The Monitor does not separately display the upper 8 bits of the accumulator.

Note that the Monitor does not display the current contents of the program counter
register. If you want to step or trace a program, you must create your own separate
routine to display.the program counter contents along with these other registers.

Registers and flags 35

The M register represents the machine state. The individual bits of this register are
described in the summary at the end of this chapter. You can find an in-depth
description of the meaning of these bits in the Apple IIGS Hardware Reference.

The Q register, also called the Quagmire register, is not actually a hardware
machine register, but a pseudoregister made up of control bits located elsewhere in
the system. One bit (bit 7), selects high-speed operation. (Earlier Apple II series
computers operated only at 1 MHz; the Apple IIGS can operate either at 1.0 MHz or 2.8
MHz.) Bits 6 to 0 enable and disable various shadowing options. Shadowing, when
enabled, writes the same data to banks $00 (or $01) and $EO (or $E1) in selected areas,
as defined by the individual shadowing bits.

The environment

The complete set of registers and flags is called the environment. When your program
encounters a break or another kind of interrupt condition, this environment is saved
by the Monitor. When you issue a command to resume execution, the environment is
restored as it was when the interrupt occurred. Your program resumes as though
nothing had happened. If you change the contents of the registers and flags that are
displayed, then the changes become the new environment that your program
encounters when it again begins to execute. You also change the registers and flags to
set up a new environment for a program that you might write and execute using the Go
command, discussed later in this chapter.

Examining and changing registers and flags

The microprocessor’s register contents change continuously during execution of a
program, such as the Monitor firmware. Using the Monitor, you can see what the
register contents were when you invoked the Monitor or when a program you were
debugging stopped at a Break (BRK) or a COP instruction or as a result of an
unserviced hardware abort condition.

36 Chapter 3: System Monitor Firmware

|

Table 3-4 lists the commands that relate to system registers.

Table 3-4

Commands for viewing and modifying registers

Command type

Command format

Examine registers Control-E

Modify accumulator {vall6}=A i
Modify X register {vall16}=X ;
Modify Y register {vall6} =Y

Modify D register {val16}=D

Modify DBR register (bank) {val}=B
Modify program bank register {val}=K
Modify stack pointer {vall6}=S i
Modify processor status {val}=P E
Modify machine-state register {val} =M !
Modify Quagmire register {val}=Q ;
Modify 16/8-bit accumulator mode {val}=m :
Modify 16/8-bit index mode {val}=x
Modify native/emulation mode {val}=e i
Modify language-card bank {val}=L !
Modify ASCII filter mask {val}=F

When you call the Monitor, it stores the contents of the microprocessor’s registers and i
flags in memory. The registers and flags are stored in the order A, X, Y, S, D, P, B, K, |
M, Q, L, m, x, and e. When you give the Monitor a G instruction, the Monitor loads |
the registers in this same sequence before it executes the first instruction in your

program. The m, x, and e flags are part of the processor status register (P). However,

because the registers and flags are reloaded in the sequence shown, whatever value you :
have placed in m, x, and e will override any such value you might have placed in P. 1

% Note: If you set the value of the e flag to 1, the 65816 automatically sets the value of m
and x to 1. This puts the processor into 6502 emulation mode, forcing it to have an r
8-bit accumulator and index registers. Additionally, the upper 8 bits of the stack
pointer are forced to a value of 01. j

Press Control-E and then Return to invoke the Monitor’s Examine instruction. This
action displays the stored register values and flags and sets the location containing the
contents of the A register as the next-changeable location. The example follows:

*Control-E Return |
The registers and flags are displayed as follows:]

You can change the values in any of these locations by typing the new value, an equal |
sign (=), and the letter for the register or flag to affect and pressing Return. In the i
following example, the first two locations are changed, and the registers and flag bits !
are again displayed to verify the change. '

Registers and flags 37

Change A to the value 1234:
*1234=A Return

Change X to the value 006A:
*006A=X Return

Execute the Examine instruction:

*Control-E

The registers and flags are displayed to verify the changes:
A=1234 X=006A Y=C3CB S=01F4 D=0000 P=00 B=00 K=00 M=0C Q=80 L=1 m=1 x=1 e=1

% Note: If you are using the Monitor to debug a program running in 6502 emulation
mode, the values for the microprocessor registers will revert to their 6502 ‘
equivalents. For example, the A, X, Y, and S registers will be able to hold only 8 !
bits each. Even if you specify (and display) a value that exceeds 8 bits, only the low 8
bits of the value you enter will be used when the system resumes 6502 emulation.

Summary of register- and flag-modification commands

The following commands can be used to modify the registers and flags. Note that all of
these are case sensitive. To change the register you want to change, you must use the
case (uppercase or lowercase) shown in the registers and flags display. The case of the
letters is the only way the Monitor can distinguish between flags and registers in this
situation (for example, compare X and x and M and m in the following list).

Change to Syntax

Accumulator {vall6}=A

X register {vall6}=X

Y register {vall6}=Y

D register {val16}=D

DBR register (bank) {val}=B

Program bank register {val}=K

Stack pointer {vall6} =S

Quagmire register {val}=Q

Machine register {val}=M

m flag {val}=m (val = 0 for 16-bit accumulator,
val = 1 for 8-bit accumulator)

x flag {val}=x (val = 0 for 16-bit index registers,
val = 1 for 8-bit index registers)

e flag {val}=e (val = 0 for native mode,

val =1 for 6502 emulation mode)

Filter value for ASCII modes {val}=FF (val = any value from $00-$FF;
default val = FF)

Language-card bank {val}=L (val= 0 or 1)

38 Chapter 3: System Monitor Firmware

Miscellaneous Monitor commands

Other Monitor commands enable you to change the video display format from
normal to inverse and back and to assign input and output to accessories in expansion
slots. Table 3-5 lists these miscellaneous commands.

Table 3-5

Miscellaneous Monitor commands

Command type

Command format

Begin inverse video

Begin normal video

Change time and date

Display time and date

Redirect input links

Redirect output links

Change screen display to text
Change cursor

Convert decimal to hexadecimal

ZVH

T=mm/dd/yy hh: mm:ss

=T

{ slot} Control-K

{ slot} Control-P

Control-T

Control-A {new_cursor_character}
={val10}

Convert hexadecimal to decimal {val64)=
Perform hexadecimal math

Add {val64} + {val64}
Subtract {val64} - {val64)}
Multiply {valG4} * {val64} i
Divide {val64} _{valG4}
Jump to cold-start BASIC Control-B
Jump to warm-start BASIC Control-C]
Jump to user vector Control-Y
Quit Monitor Q

Inverse and normail display

You can control the setting of the inverse/normal mask location used by the COUT
subroutine from the Monitor so that all of the Monitor’s output will be in inverse
format. The COUT routine is described in Chapter 4, “Video Firmware.” The Inverse
command (I) sets the mask so that all subsequent input and output are displayed in
inverse format.

*I Return
To switch the Monitor’s output back to normal format, use the Normal command (N). }
|

*N Return ‘E

39 .

Miscellaneous Monitor commands

Working with time and date

You can display or set the time and date directly from the Monitor. (Normally, time
setting is handled through the Control Panel, which is described in Appendix G, “The
Control Panel.”)

Here is the format for displaying the time and date:
=T Return

If you want to set the time and date, use the following format (for decimal number
entry):

=T=nn/dd/yy hh:mm:ss

where nn is the month (range 1-12), dd is the day (range 1-31), yy is the year (range
0-99), hh is the hour (range 0-23), mm is the minutes (range 0-50), and ss is the
seconds (range 0-59). The delimiters slash (/) and colon (:) are shown as the
suggested format because these delimiters conform to what a user normally expects to
see. However, any delimiter other than an apostrophe (') can be used to separate the
values entered.

Redirecting input and output

The Printer command, activated by Control-P, diverts all output normally destined
for the screen to an interface card in a specified expansion slot, from 1 to 7. There
must be an interface card in the specified slot or you will lose control of the computer
and your program and variables may be lost. The format of the command is

{slot-number) Control-P

A Printer command to slot 0 will switch the stream of output characters back to the
Apple IIGS video display.

Don'’t issue the Printer command using a slot value of 0 to deactivate the 80-column
firmware, even though you used this command to activate it in slot 3. The command
works, but it just disconnects the firmware, leaving some of the soft switches set for 80-
column display.

In much the same way that the Printer command switches the output stream, the
Keyboard command substitutes the interface card in a specified expansion slot for the
normal Apple IIGS input device, the keyboard. The format for the Keyboard
command is

{slot-number) Control-K

Specifying slot number 0 for the Keyboard command directs the Monitor to accept
input from the Apple 1IGS keyboard.

The Printer and Keyboard commands are the equivalents of BASIC commands PR#
and IN#,

40 Chapter 3: System Monitor Firmware

Changing the cursor character

You can change the Monitor cursor from a flashing blank space to whichever character
you wish. Here is the format for changing the cursor:

Here is an example that sets an underscore () as your new cursor character:

*Control-~_ Return
*

The underscore now appears as the cursor character. To restore the original cursor,

{

|

4

4

|

i

Control-~ {new cursor character) i
B!

4

i

i

|

|

specify that the new cursor is a delete character. 4‘
4

Converting hexadecimal and decimal numbers
You can convert up to 8-digit hexadecimal numbers to decimal values. The syntax is 4
{value) = {Return)
For example, type |
*000F= Return ‘
Hexadecimal $000F is converted to decimal 15: I

15 {+15} 4

*

You can also convert a decimal number to a hexadecimal number. The syntax is as !
follows: i

={value} Return |

For example, type

*=0015 Return

Decimal 0015 is converted to hexadecimal $0000000F: |
i

$0000000F

*

Miscellaneous Monitor commands 41

Hexadecimal math

You can use the Monitor to perform hexadecimal math. The Apple IIGS Monitor can
handle 32-bit addition, subtraction, multiplication, and division operations. The
syntax for these operations is shown below. Note that multiplication shows a 64-bit
result, and division displays both the remainder and the quotient. Notice also that
bank-address information provided in the entry of the data is ignored during the
calculations. If you wish to actually perform address calculations, you can convert
your bank and address into a 6-digit hexadecimal quantity and use that for the
calculations (just leave out the forward slash).

Operation Syntax

Addition {val64}+{val64} Return

Subtraction {val64} - {val64} Return

Multiplication {val64} * {val64} Return

Division {val64} _{val64} Return (An underscore character rather than ',
the traditional forward slash is used to specify division.) E

Here are a few examples:

*1234+1234 Return

-> 500002468

*1234+34 Return

-> $00001268

*34+1 Return

-> $00000035

*1112-2222 Return

-> SFFFFEEFO

*12*3456789 Return

-> $S000000003AE147A2
*12345678_120 Return

R-> $000000D8 Q-> $00102E85
*0/23+1/23 Return

-> $00000046 (Bank-address information was ignored.)

42 Chapter 3: System Monitor Firmware

A Tool Locator call

From the Monitor, it is possible to call the toolbox routines. However, the toolbox
routines will most often be used by programs rather than by keyboard access through
the Monitor. The syntax for the Tool Locator call is listed in detail in the summary at
the end of this chapter. If you wish to use tool calls from the Monitor, see the

Apple IIGS Toolbox Reference for details about the tool numbers and parameter
requirements for the tool of your choice.

As an example of a possible use, here are two sample tool calls. The first call, once
entered, allows you to type a line of text, followed by a carriage return. This first call
returns a count, in hexadecimal, of the number of characters you typed. You will then
store the number you receive into a memory location and call another tool that will
retrieve and type the characters to the display.

This first tool call reads the keyboard, storing successive characters in locations w
beginning in memory location $012080 until you type a carriage return character.)

\C20001 2081 O0FF O 8D 0 1 24 C\U Return

After you input some text and press Return, the Monitor responds with a hex count of
the number of characters you typed. If you typed

THESE ARE MY LETTERS. Return
the Monitor responds |

*15 !

*

Now type the following line after the Monitor prompt to store that number you
received into memory to set up for the tool to type the text. The hex value that you
enter in this memory-modification command is the same value that the tool returned
as your character count.

01/2080:15 Return
The following command asks a tool to type the text:

- \4 001 20 80 1C C\U Return !

Back to BASIC

Use the BASIC command, Control-B, to leave the Monitor and enter the BASIC that
was active when you entered the Monitor. Normally, this is Applesoft BASIC, unless
you deliberately switched to Integer BASIC. Note that if you use this command, any
program or variables that you had previously entered in BASIC will be lost. If you want
1o reenter BASIC with your previous program and variables intact, iise the Continue
BASIC command, Control-C.

If you are using DOS 3.3 or ProDOS®, press Control-Reset or use the Monitor Q (Quit)
command to return to the language you were using with your program and variables
intact.

Miscellaneous Monitor commands 43

Special tricks with the Monitor

This section describes some more complex ways of using the Monitor commands,
including

O placing multiple commands on a single command line
O filling memory with a multiple-byte pattern
O repeating commands

O creating your own commands

Multiple commands

You can put as many Monitor commands on a single line as you like, so long as you
separate them with spaces and the total number of characters in the line is less than
254. Adjacent single-letter commands such as L, S, I, and N need not be separated by
spaces.

You can freely mix all of the commands except the Store (:) command. Because the
Monitor takes all values following a colon and places them in consecutive memory
locations, the last value in a Store command must be followed by a letter command
before another address is entered. You can use the Normal command as the letter
command in such cases; it usually has no effect on a program and can be used
anywhere.

In the following example, you display a range of memory, change it, and display it
again, all with one line of commands:

*1300.1307 1300:38 39 1 N 1300.1302 Return
00/1300 - 00 00 00 00 00 00 00 00 38 39 0l-........ 89

*

If the Monitor encounters a character in the input line that it does not recognize as
either a hexadecimal digit or a valid command character, it executes all the
commands on the input line up to that character. It then grinds to a halt with a beep
and ignores the remainder of the input line.

44 Chapter 3: System Monitor Firmware

Filling memory

The Move command can be used to replicate a pattern of values throughout a range of
memory. To do this, first store the pattern in the first locations in the range:

*¥1300:11 22 33-."3

*

Remember the number of values in the pattern; in this case, it is 3. Use this number to
compute addresses for the Move command, like this:

{start-number) < { start} . { end-number)M

This Move command first replicates the pattern at the locations immediately following
the original pattern, then replicates that pattern following the first replication, and so
on until it fills the entire range:

*¥1303<1300.1334M
*1300.1317 Return
00/1300 - 11 22 33 11 22 33 11 22 33 11 22 33 11 22 33 11-."3,"3,"3,"3,"3,

00/1310 - 22 33 11 22 33 11 22 33-"3."3.,"3 i
*

You can perform a similar trick with the Verify command to check whether a pattern
repeats itself through memory. Verify is especially useful for verifying that a given
range of memory locations all contain the same value. In the following example, you
first fill the memory range from $1300 to $1320 with zeros and verify it; you then
change one location and verify it again:

¥1300:0
*1301<1300.1320M
¥1301<1300.1320V

*¥1304:02
¥1301<1300.1320V

1303 - 00 (02)
1304 - 02 (00)

*

The Verify command detects the discrepancy.

Special tricks with the Monitor 45 i

Repeating commands

You can create a command line that continuously repeats one or more commands.
You do this by beginning the part of the command line that you want to repeat with a
letter command, such as N, and ending it with the sequence 34:n, where n is a
hexadecimal number that specifies the position in the line of the command where you
want to start repeating. For the first character in the line, n = 0. The value for n must be
followed by a space for the loop to work properly.

This trick takes advantage of the fact that the Monitor uses an index register to step
through the input buffer, starting at location $0200. Each time the Monitor executes a
command, it stores the value of the index at location $34; when that command is
finished, the Monitor reloads the index register with the value at location $34. By
making the last command change the value at location $34, you change this index so

that the Monitor picks up the next command character from an earlier point in the
buffer.

The only way to stop a loop such as this is to press Control-Reset; that is how the
following example ends:

*N 1300 1302 34:0 Return

1300 - 11

1302 - 33

1300 - 11

1302 - 33

1300 - 11

1302 - 33

1300 - 11

1302 - 33

1300 - 11

1302 - 33

1300 - 11

1302 - 33

130 (Control-Reset is pressed here; the Monitor jumps to Applesoft.)
]

46 Chapter 3: System Monitor Firmware

Creating your own commands

The User command, Control-Y, forces the Monitor to jump to memory location
$03F8. You can put a JMP instruction there that jumps to your own machine-language
program. Your program can then examine the Monitor’s registers and pointers or the
input buffer itself to obtain its data. For example, the following program displays
everything on the input line after Control-Y. The program starts at location $0300; the
command line that starts with $03F8 stores a jump to $0300 at location $03F8. Here is
the program, followed by a listing of the method by which it is entered into the
Monitor.

The program:

LDX 34 ;Get the index from location $34
;Points to next character position in input line
MORE LDA 200,x ;Get that character into accumulator
JSR COUT ;Output the character
INX ;Point to the next character
CMP #8D ;See if it is a carriage return
BNE MORE ;If not, go get more
JMP MONZ ;Jump to standard monitor entry point (Call -151)

Entering the program into the Monitor:

*300:A4 34 B9 200 20 FDED C8 C9 8D DO F5 4C FFé69
*3F8:4C 300

*Control-Y THIS IS A TEST

THIS IS A TEST

*

Notice that the target addresses for the JSR (jump to subroutine) instructions (value of
hex 20) are entered directly as their 4-digit hexadecimal values rather than as separate
byte pairs in reverse order as would normally have been required for the system
Monitor in machines prior to the Apple IIGS. You can enter full 32-bit addresses in
this manner if you wish (up to 8 hexadecimal digits, forming a 32-bit quantity).

Special tricks with the Monitor 47

Machine-language programs

The main reason to program in machine language is to get more speed. A program in
machine language can run much faster than the same program written in high-level
languages such as BASIC or Pascal, but the machine-language version usually takes a
lot longer to write. There are other reasons to use machine language: You might want
your program to do something that isn’t included in your high-level language, or you
might just enjoy the challenge of using machine language to work directly on the bits
and bytes. It is highly unlikely that a serious software developer will use the mini-
assembler to produce large programs. However, the mini-assembler is a useful tool
for quickly checking various basic concepts. Sometimes just the ability to examine
memory is very handy.

< Note: If you have never used machine language before, you'll need to learn the
language of the 65C816. To become proficient in machine-language programming,
you'll have to spend some time working with it and study at least one book on
65C816 and perhaps also 6502 or 65C02 programming.

You can get a hexadecimal dump of your program, move your program around in
memory, examine and change register contents, and so on using the commands
described in the previous sections. The Monitor commands in this section are
intended specifically for you to use in creating, writing, and debugging machine-
language programs. Table 3-6 lists the commands that relate to program creation and
debugging.

Table 3-6
Commands for program execution and debugging

Command type Command format

Go (begin) program in bank $00 {start_address}G

Execute from any memory bank {start_address}X
Restore registers and flags Control-R

Resume execution {start_address}R
Perform a program step {start_address}S
Perform a program trace {start_address}T
Disassemble (list) {start_address}L

Enter mini-assembler !

48 Chapter 3: System Monitor Firmware

Running a program in bank zero

The Monitor command you use to start execution of your machine-language program
is the Go command. When you type an address and the letter G, the Apple IIGS
restores all of the machine registers from their stored locations and begins executing
machine-language instructions starting at the specified location. If you type only G,
execution starts at the last-opened location. The syntax of the Go command is

{start_address)G Return

The Monitor treats this program as a subroutine and executes a JSR to the program. If
you want the routine to end by returning control to the Monitor, your program must
end with an RTS (return from subroutine) instruction to transfer control back to the
Monitor.

The Monitor has some special features that make it easier for you to write and debug
machine-language programs; but before you learn about these, here is a small
machine-language program that you can run using only the simple Monitor
commands already described. The program in the example displays the letters A
through Z. Store it starting at location $0300, examine it to be sure you typed it

correctly, and then type 300G to start it running.

*300:A9 C1 20 FDED 18 69 1 c9 DB DO F6 60 Return
*300G Return

abcdefghijklmnopgrstuvwxyz
*

This is the assembly code that represents the preceding hand-assembled program:

LDA #C1 ;Place ASCII for "A" into accumulator
OUT JSR COUT ;Note: Mini-assembler does not use labels
CLC
ADC #1 ;Add 1 to contents of accumulator
CMP #DB ;Compare contents to a value of ASCII ("2"+1)

BNE OUT ;If not, go back and output accum value again

The G instruction works only for code in bank $00. The system beeps if the user
specifies any bank other than $00. The G instruction sets up a JSR to the code and
expects this code to end in an RTS.

Machine-language programs 49

Running a program in other banks of memory

You can run programs in banks other than bank $00 by using the X command instead
of the G command. The X command restores all of the machine registers from their
stored locations and begins executing at the specified location. A JSL instruction
Gump to subroutine long) is performed instead of a JSR, and the user’s code is
expected to end with an RTL (return from subroutine long). The syntax of the X
command is

{start_address}X Return

Resuming program execution

You can resume execution of programs halted by a deliberate BRK (Break) instruction
or Trace command by using the R command (Resume). Run programs in banks other
than bank $00 by using the X command instead of the G command. The R command
restores all of the machine registers from their stored locations and begins executing
at the location you specify. A JMP instruction is performed instead of a JSR or JSL
because the Resume command assumes that you do not intend to return to the
Monitor.

Stepping through or tracing program execution

The Apple IIGS Monitor includes two commands for stepping through a program one
instruction at a time and for tracing program execution (performing multiple steps).
You put the Monitor into Step mode by using the S command. You put the Monitor
into Trace mode by using the T command. (These commands, though present, are
not fully implemented.) The Step command prints "STEP" and returns control to
the Monitor. The Trace command prints "TRACE"™ and returns control to the
Monitor. If you want to implement your own Step and Trace functions, simply modify
the Step and Trace vector locations to point to your own custom version of each
routine. These vectors are shown in Appendix D, “Vectors.” The formats for Step and
Trace are shown in the summary at the end of this chapter.

50 Chapter 3: System Monitor Firmware

The mini-assembler

The Apple IIGS mini-assembler included in the Monitor program allows you to enter
machine-language programs directly from the keyboard. ASCII characters or hex
values can be entered into a mini-assembler program exactly as you enter them in the
Monitor. The mini-assembler doesn’t accept labels; you must use actual values and
addresses.

When you enter the mini-assembler, the Monitor prompt character changes from *
to ! (the mini-assembler prompt) and assembles the first line of code (if a line of
code is typed on the same line as the exclamation point that caused the mini-
assembler to be entered).

gfarhng fhe mini-assembler

To start the mini-assembler, first invoke the Monitor from BASIC by typing
Call -151 Return

Then, from the Monitor, type

! Return

or

! {bb/addr) : {opcode} {operand) Return

lTsmg Vtr{é mini-assembler

The mini-assembler saves one address, that of the program counter. Before you start
typing a program, you must set the program counter to point to the location where you
want the mini-assembler to store your program. Do this by typing the address

followed by a colon. Then type the mnemonic for the first instruction in your

program, followed by a space and the operand of the instruction.

1300:LDX #02 Return

The mini-assembler converts the line you typed into hexadecimal format, stores it in
memory beginning at the location of the program counter, and then disassembles it
again and displays the disassembled line. The prompt is then displayed on the next
line.

00/0300- A2 02 LDX #02

!

The mini-assembler 51

The mini-assembler is now ready to accept the second instruction in your program.
To tell it that you want the next instruction to follow the first, don’t type an address or a
colon; type a space and the next instruction’s mnemonic and operand and then press
Return.

The first space after the exclamation point (!) controls the nature of the digits that
follow:

O A space means you want the next instruction to follow the first.

O A colon (:) means hexadecimal information follows.

O A double quotation mark (") means ASCII information follows.

O A number means an address follows.

The first instruction is as follows:

! LDA $0,X Return

The mini-assembler assembles that line and is then ready for the next instruction.

00/0302- B5 00 LDA 00,X
!

The following example shows the procedure for entering a program using the mini-
assembler. The instructions you type are shown on a line with the prompt character
(!); the assembled display is shown, in each case, on a line without a prompt
character.

1300:1LDX #02

00/0300- A2 02 LDX $02
! LDA 0,X »
00/0302- B5 00 LDA 00, %
! STA $10,X

00/0304- 95 10 STA 10,%
! DEX

00/0306- CA DEX

! STA $C030

00/0307- 8D 30 CO STA c030
! BPL $302

00/030A- 10 F6 BPL 0302
! BRK 00

00/030C- 00 00 BRK 00

% Note: Don't forget the space after the exclamation point. The program needs the
space after the exlamation point to follow the address precedent set by the initial
instruction.

52 Chapter 3: System Monitor Firmware

—

If you want to enter a program in hexadecimal notation, you must start in the hex
mode, as the following example indicates:

11000::23 24 25
160 61 C1

If an instruction line has an error in it, the mini-assembler beeps loudly and displays a
caret (*) under or near the offending character in the input line. If you forget the space
before or after a mnemonic or include an extraneous character in the hexadecimal
value or address, the mini-assembler rejects the input line. If the destination address
of a branch instruction is out of the range of the branch (more than 127 locations
distant from the address of the instruction), the mini-assembler flags this as an error.

B ——

To leave the mini-assembler and reenter the Monitor, press Return immediately after
the ! prompt.

T —

Your assembly-language program is now stored in memory. You can display it with
the List (L) instruction as follows:

B *300L

® l=m 1=x 1=LCBank(0/1)
§ 00/0300- A2 02 LDX #02
B 00/0302- B5 00 LDA 00, X
00/0304- 95 10 STA 10, X
00/0306- CA DEX
00/0307- 8D 30 CO STA c030
00/030A- 10 F6 BPL 0302
00/030C- 00 00 BRK 00
00/030E- 00 00 BRK 00
88583%33 88 88 %{%ﬁ 88 isﬁ?r the program is difsnla ed. the List instmiction
plays enough lines of code to fill the screen.)
00/0314- 00 00 BRK 00
00/0316- 00 00 BRK 00
00/0318- 00 00 BRK 00
00/031A- 00 00 BRK 00

*

The mini-assembler 53

Mini-assembler instruction formats

The mini-assembler recognizes 256 mnemonics and 24 addressing formats. Table 3-7
shows the address formats for the 65C816 assembly language. (Mini-assembler
opcodes are listed in Appendix F, “Disassembler/Mini-Assembler Opcodes.”)

Table 3-7

Mini-assembler address formats

Mode Name Format

a Absolute 1234

a,x Absolute indexed (with x) 1234,X
a,y Absolute indexed (with y) 1234)Y
(a,x) Absolute indexed indirect (1234,X)
al,x Absolute indexed long 081234,X
(@) Absolute indirect (1234)

al Absolute long 081234
Acc Accumulator Blank

xya Block move 01,02

d Direct 45

d,x Direct indexed (with x) 45X

d,y Direct indexed (with y) 45
d,x) Direct indexed indirect (45,X)
@ Direct indirect 45)

D,y Direct indirect indexed (45),Y
[dl,y Direct indirect indexed long [45],Y

[d] Direct indirect long [45]

Immediate #23 or #2345
i Implied Blank

r Program counter relative 1000 {+50}
rl Program counter relative long 1000 {0200}
s Stack Blank

r,s Stack relative 10,S
(1,8),y Stack relative indirect indexed (10,S),Y

An address consists of one or more hexadecimal digits. The mini-assembler
interprets addresses the same way the Monitor does: If one, three, or five digits are
entered, a preceding zero is automatically entered as well. For example, the

instruction LDA: #1 is assembled as A9 01.

¢ Note: The dollar signs ($) used in this manual to signify hexadecimal notation are
ignored by the mini-assembler and may be omitted when typing programs.

54 Chapter 3: System Monitor Firmware

Branch instructions, which use the relative addressing mode, require the target I
address of the branch. The mini-assembler automatically calculates the relative :
distance to use in the instruction. If the target address is more than the allowable
distance from the current program counter, the mini-assembler sounds a beep,
displays a caret (*) under the target address, and does not assemble the line.

If you give the mini-assembler the mnemonic for an instruction and an operand and
the addressing mode of the operand cannot be used with the instruction you entered,
the mini-assembler will not accept the line.

The Apple lIGS tools

As you are creating a program, you will very likely want to incorporate calls to various |
Apple IIGS tools into your program. To use the tools, you need an intimate knowledge 4
of the tools themselves. You should therefore consult the appropriate Apple IIGS |
Toolbox Reference manual for information about each tool. The Monitor includes a
Tool Locator call as one of the commands. The format and details are given in the
command summary at the end of this chapter.

The Tool Locator command actually performs a call to the selected tool, performs the
desired function, and provides you with debug information about the data that the tool
provides as return values.

The Tool Locator call lets you type a one-line command instead of requiring that you

create a program to test the tool. See the Apple IIGS Toolbox Reference for more
information.

The disassembler

Because hexadecimal code is so difficult to read and understand, you may want to |
translate machine language back into assembly language. You can use the List 1
instruction as a disassembler for this purpose.

The Monitor List instruction has the format
{start_address) L

The List instruction starts at the specified location and displays a full screen (20 lines)
of instructions. For example, if you want to display a list of instructions starting at
location $1000 in bank 12, type

*12/1000L Return

The disassembler 55

The following list is displayed:

0=m 0=x 1=LCBank (0/1)

12/1000: AD 15 18 LDA 1815
12/1003: 9D 50 10 STA 1050,X
12/1006: 9F 50 52 05 STA 055250
12/100A: A9 77 66 LDA #6677
12/100D: 82 20 10 BRL 2030 {+1020}
12/1010: 80 20 BRA 1032 {+20}
12/1012: F4 12 34 PEA 3412
12/1015: 62 10 10 PER 2028
12/1018: 87 45 STA [45]
12/101A: 62 00 FO PER 001D {-1000}
12/101D: A9 23 LDA #0023
12/101F: A2 45 67 LDX #6745
12/1022: 4F 54 46 02 EOR 0244654
12/1026: DC 89 23 JML (2389)
12/1029: 7C BE F2 JSR (F2BE,X)
12/102C: 73 40 ADC (40,8),Y
12/102E: C1 06 CMP (06),Y
12/1030: OA ASL

12/1031: 00 23 BRK 23

12/1033: B8 CLV

*

The top line of the disassembly shows you the current settings of the m and x bits of the
65C816 status register. Recall that you set these bits by using the {val}=m and {val}=x
Monitor commands. Both affect the way the disassembly is performed by the
Monitor. The LC (language-card) bank information shows you which of the two
available language-card banks is currently active. You change the language-card bank
by using the {val}=L command.

The disassembler can disassemble all 65C816 opcodes in emulation and native modes
(both 8-bit and 16-bit native mode). In either native or emulation mode, the sizes of
the accumulator and index registers are significant. In immediate mode, the sizes are
important for the opcodes listed in Table 3-8.

56 Chapter 3: System Monitor Firmware

Display Memory Location
{from_address)
Displays contents of memory location as

{from_address}: {val}-{ASCII)

Display a Range of Memory Locations
{from_address) . (to_address)

Displays memory.

In 40-column mode, type

*20/401.413

Memory contents from $0401 in bank 20 to $0413 in bank 20 are displayed in
40-column mode:

20/0401:C1 C2 C3 C4 C5 C6 C7-ABCDEFG
20/0408:C8 C9 CA CB CC CD CE CF-HIJKLMNO
20/0410:D0 D1 02 03-PQ.

In 80-column mode, type
*20/401.42

Memory contents from $0401 in bank 20 to $0413 in bank 20 are displayed in
80-column mode:

20/0401:C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CD CF-ABCDEFGHIJKOLMNO
20/0410:D0 D1 02 03 04 05 06 07 D2 D3 D4 D5 D6 D7 D8 D9-PQ...... RSTUVWXY
20/0420:E1 E2-abcd

<+ Note: Printable ASCII characters are output as normal ASCII characters.
Nonprintable characters are output as periods. In 40-column mode, half a page of
memory can be displayed; in 80-column mode, a full page of memory can be
displayed.

Terminate Memory Range
Control-X

Terminates Display Range of Memory Locations command.

58 Chapter 3: System Monitor Firmware

e T

Carriage Return
Return

Performs a carriage return with no preceding entry. ji

In 40-column mode, displays the contents of up to the next 8 locations in hexadecimal
and ASCII formats. (Location starts at last { bank/address} entered and continues
until the low nibble of the addresses being displayed equals 0 or 8.) See format of
Display Memory Location command.

In 80-column mode, displays the contents of up to the next 16 locations in

hexadecimal and ASCII formats. (Location starts at the last { bank/address} \
entered and continues until the low nibble of the addresses being displayed equals 0.) ;
See format of Display Memory Location command.

Move, M :
{destination} < { from_address} . {to_address}M

Moves data from {from_address} through {to_address} to locations starting at
{destination} .

verify, V

{destination} < { from_address) . {to_addressyV

Compares the memory contents starting at { destination} through
{destination} +({to_address — {from_address}) with the memory contents starting
at {from_address} through {to_address} and verifies that they are the same.

Fill Memory, Z
{valy<{ from:address) A to:address) 2 ‘

Fills memory in the range {from_address} through {to_address} with the 1-byte
value {val}.

Pottern Search, P
\(vall} ("literal ASCII"} {'123t'} (val8}\<{from address) . (to_address}p

Searches for any length pattern up to 236 bytes in memory ranging from
{from_address} through {to_address}; {val} can be hexadecimal, literal ASCII, or
flipped ASCII. The address of each location where the pattern is found is output to the
screen followed by a carriage return. The pattern search continues until the entire
range of addresses has been examined.

Summary of Monitor instructions 59

Examine Registers

Control-E

Examines 65C816 registers and flags.
The screen displays

A=aaaa X=xxxXxX Y=yyyy S=ssss D=dddd P=pp
B=bb K=kk M=mm Q=qgq L=1 m=m x=x e=e

On a 40-column screen, two lines are displayed automatically; on an 80-column
screen, only one line is displayed.

Change the A Register, A
{vall6)y=A

Changes A register value to {val16} for Resume/Go/Execute/Step/Trace commands.
Note: A must be uppercase.

Change X Register, X
{vall16)=X

Changes X register value to {val16} for Resume/Go/Execute/Step/Trace commands.
Note: X must be uppercase.

Change Y Register, Y
{vallGy=Y

Changes Y register value to {val16} for Resume/Go/Execute/Step/Trace commands.
Note: Y must be uppercase.

Change D Register, D
{vall6)=D

Changes direct-page/zero-page register value to {vall16} for
Resume/Go/Execute/Step/Trace commands. Note: D must be uppercase.

60 Chapter 3: System Monitor Firmware

Change Data Bank Register, B
{val}=B

Changes data bank register value to {val} for Resume/Go/Execute/Step/Trace
commands. Note: B must be uppercase.

Change Program Register, K
{val}=K

Changes program register value to {val} for Resume/Go/Execute/Step/Trace
commands. Note: K must be uppercase.

Change Stack Pointer, S
{val16} =S

Changes stack pointer value to {val16} for Resume/Go/Execute/Step/Trace
commands. Note: S must be uppercase.

Change Processor Status, P
{valy=pP

Changes processor status value to {val} for Resume/Go/Execute/Step/Trace
commands. Note: P must be uppercase.

Change Machine State, M
(valy=M

Changes machine-state value to {val} for Resume/Go/Execute/Step/Trace
commands. Note: M must be uppercase.

The M bits are as follows:

Bit7=1 Makes alternate zero page/LC active

Bit6=1 Makes Page 2 active

Bit5=1 Makes RAMRD active

Bit4=1 Makes RAMWRT active

Bit3=1 Makes RDLCROM active, not read/write—read only
Bit2=1 Makes LC bank 2 active

Bit1=1 Makes alternate ROMBANK active

Bit0=1 Makes INTCXROM active

Summary of Monitor instructions 61

Change Quagmire State, Q
{val}=0

Changes Quagmire state value to {val} for Resume/Go/Execute/Step/Trace
commands. (The Quagmire value controls shadowing and system speed).
Note: Q must be uppercase.

The Q bits are as follows:

Bit7=1 High speed

Bit6=1 Stops IOLC shadowing

Bit5=0 Always must be 0

Bit4=1 Stops auxiliary-memory Hi-Res shadowing
Bit3=1 Stops Super Hi-Res shadowing

Bit2=1 Stops Hi-Res Page 2 shadowing

Bitl1=1 Stops Hi-Res Page 1 shadowing

Bit0=1 Stops text Page 1 shadowing

Change Accumulator Mode, m
{val)=m

Changes accumulator mode value to {val} for Resume/Go/Execute/Step/Trace/List
commands. Note: m must be lowercase.

0 = 16-bit mode
1 = 8-bit mode

Change Index Mode, x
{valy=x

Changes index mode value to {val} for Resume/Go/Execute/Step/Trace/List
commands. Note: x must be lowercase.

0 = 16-bit mode
1 = 8-bit mode

Change Emulation Mode, e
{valy=e

Changes emulation-mode value to {val} for Resume/Go/Execute/Step/Trace/List
commands. Note: e must be lowercase.

62 Chapter 3: System Monitor Firmware

e ——

Change Language-Card Bank, L

{valy=L

Changes language-card bank value to {val} for Resume/Go/Execute/Step/Trace/List “‘
commands. Note: L must be uppercase. :

0 = First bank of language card
1 = Second bank of language card

Change Filter Mask, F
{valy=F

Changes the ASCII filter mask value to {val} for mini-assembler ASCII entry and
Monitor ASCII immediate-mode commands. The ASCII filter is ANDed with all ASCII
characters entered in the Monitor. Affects both data entry and search conditions. Any
value from $00 to $FF is valid. Note: F must be uppercase. The default value is FF.

Change Text Display, | (Inverse)
I

Switches to inverse video text display. Note: I must be uppercase.

Change Text Display, N (Normal)

N

Switches to normal video text display. Note: N must be uppercase.

Display Time and Date, T

=T

Displays current time and date. Note: T must be uppercase.

Summary of Monitor instructions 63

Change Time and Date C
=T=nn/dd/yy hh:mm:ss

Changes time. Note: T must be uppercase. Any delimiter except an apostrophe (")

Ci
may be used between values entered. m
Enter
hh = hours 0-23 C
mm = minutes 0-59 -3
ss = seconds 0-59
nn = month 1-12 C
dd = day 1-31 m
Yy =year 0-99 St
Redirect Input Links, K J
{slot} Control-K C
Redirects input links to {slot}. U
Redirect Output Links, P J
{slot} Control-P c
Redirects output links to {slot}. U
Change Consecutive Memory Ji
{bank/ address) : (val} {(val} {(valy ("literal ASCII"} (' flip ASCII'} {(val) C
Changes consecutive memory locations starting at { bank/ address} to the values after U
the colon (:). Values can be in hex, literal ASCII, or flip ASCII format.

(S
Change Screen Display, T 0
Control-T D
Changes screen display to text Page 1, regardless of current soft-switch settings. o
Change Cursor R
Control-A { character) {:
Changes the cursor to a {character} symbol. This command is implemented through T
COUT1 and C3COUTT. It is not an input command; it works only through the BASIC S
output links. If {character} is the Delete character, the original cursor is restored. jo

W

a;

64 Chapter 3: System Monitor Firmware

b
S

Convert Hexadecimal to Decimal Format
{val64)= Return

Converts hexadecimal number entered to decimal number (8-digit hex number
maximum). Result is printed starting at first column on next line.

Convert Decimcal to Hexadecimal Format
={val10} Return

Converts decimal number entered to hexadecimal number (10-digit decimal number
maximum). Result is printed starting at first column on next line. Entries may be
signed (+/-) or unsigned.

Jump to Cold Start
Control-B

Unconditionally jumps to BASIC’s cold-start routine at ROM location $E000.

Jump to Warm Start
Control-C

Unconditionally jumps to BASIC's warm-start routine at ROM location $E003.

Jump to User Vector
Control-Y

Unconditionally jumps to user vector at $03F8.

Quit Monitor, @
0

Discontinues Monitor operation. Unconditionally jumps to $3D0 to warm-start the
operating system.

Run a Program in Bank $00, G

(start_address)G

Transfers control to the machine-language program beginning at {start_address}.
Sets the environment from stored locations A/X/Y/S/D/P/B/K/M/Q/L/m/x/e;
pushes RTS information on the user’s stack and performs a JMP to {start_address}
with RTS information left on the stack (only works for code in bank $00 because it
assumes user’s routine ends in an RTS).

Summary of Monitor instructions 65

Reset the Environment and Transfer Control, X (Execute)
{start_address)x

Retrieves A/X/Y/S/D/P/B/K/M/Q/L/m/x/e data from stored locations, sets those
data as the environment, pushes RTL information on the user’s stack, and performs a
JMP to {start_address} with RTL information on the stack (works for code in any bank;
assumes user’s code ends in an RTL).

Restore Registers and Flags
Control-R

Restores registers and flags to the normal Monitor configuration mode. Changes
A/X/Y/S/D/P/B/K/M/Q/L/m/x/e.

Reset the Environment and Transfer Control, R (Resume)
{start_address)R

Sets the environment from stored locations A/X/Y/S/D/P/B/K/M/Q/L/m/x/e and
JMPs to {start_address}.

Perform a Program Step, $
{start_address)s

Not implemented in current version.

Perform a Program Trace, T
{start_address)T

Not implemented in current version.

Disassemble, L (List)
{start_address) 1,

Disassembles up to 20 instructions starting at location {start_address}.

66 Chapter 3: Systemn Monitor Firmware

Tool Locator, U
\tbytes to stk_# bytes frm stk_parml_. ..parmz functiont tool§\U
The underline character () indicates where spaces must be placed.

#bytes to stk indicates the number of parameters that need to be pushed onto the stack
to make the utility call to the specified tool.

#bytes frm stk indicates the number of parameters the function pushes onto the stack.
That many bytes will be pulled from the stack and displayed at the end of the call.

parmI_. . . parmz indicates the parameters to push onto the stack before making the
Tool Locator call. Parameters must be single-byte values. For example, to enter a
4-byte address, type 00 bb hh 11, where

00 = null byte of address (space required after byte)

bb = bank number of address (space required after byte)

hh = high byte of address (space required after byte)

11 = low byte of address space (space required after byte, before next parameter)

To enter multiple ASCII bytes, type 'W', 'X' or "W", "X", using either single or
double quotation marks. Each ASCII byte is a parameter and so must be separated with
a space.

Junction# indicates the function number to be called in the specified tool.
toolt indicates the tool number to be called by utility call.

The function numbers and tool numbers are listed in the Apple IIGS Toolbox
Reference.

A tool error number is always printed along with parameters left on the stack after the
tool is called. The format of the error printout is Tool error = eeee, where eeee is
the value of the accumulator (error) after the tool call. On errors $0001-$000F, the U
command removes and displays exactly the number of bytes it pushed onto the stack
before the call. For errors >$000F, no parameters are left on the stack, so none are
displayed.

Summary of Monitor instructions 67

Chapter 4

Video Ei
Firmware @

69

This chapter describes the routines and command sequences that you use to control
the video output of text to the Apple IIGS video screen. The Apple 1IGS video firmware
includes routines for text input and output. These routines are used by high-level
languages, but can just as easily be called directly from a routine that you have written
using the mini-assembler. Almost every program on the Apple IIGS takes input from
the keyboard or mouse and sends output to the display. The Monitor and BASIC
accept keyboard mput and produce screen output by usmg standard input/output

ST T TeT j T T Tm o mmrfe T vTme e e e smse v e was e rpenen R st S

(1/0) subroutines built into the Apple 1GS firmware.

Using the video firmware I/O routines, you can

0

read keys individually from the keyboard

O read an entire line of key entries

O send characters to the firmware output routines
o

call built-in routines that control the video display

When you call a routine to get an entire line, the user has the opportunity to use the
Backspace key and other onscreen editing facilities before your routine sees the line.
When you send characters to the firmware output routines, most of the characters are
transmitted to the display. However, some of the characters control the display
subsystem. These special characters are listed in Tables 4-1, 4-3, and 4-4.

Standard 1/0 links

When you call one of the character 1/0 subroutines (COUT and RDKEY), the video
firmware performs an indirect jump to an address stored in programmable memory.
Memory locations used for transferring control to other subroutines are sometimes
called vectors; in this manual, the locations used for transferring control to the I/O
subroutines are called /O /inks. In an Apple IIGS running without a disk, each I/O link
normally contains the address of the body of the subroutine (COUT1 or KEYIN) that
the firmware calls for that specific form of I/O. If a disk operating system is running,
one or both of these links holds the address of the corresponding DOS or ProDOS 1/0
routines instead of the firmware default values. (DOS and ProDOS maintain their own
links to the standard I/O subroutines.)

By calling the 1/O subroutines that jump to the link addresses instead of calling the
standard subroutines directly, you ensure that your program will work properly with
other software, such as DOS or a printer driver, that changes one or both of the I/O
links.

For the purposes of this chapter, we shall assume that the I/O links contain the
addresses of the standard I/O subroutines: COUT1 and KEYIN if the 80-column
firmware is disabled, and BASICOUT C(also called C3CCUT1) and BASICIN if the
80-column firmware is enabled.

70 Chapter 4: Video Firmware

' Standard input routines

The Apple IIGS firmware includes three different subroutines for reading from the

. keyboard. These subroutines are written to function at different levels. The character
input subroutine KEYIN (or BASICIN when the 80-column firmware is active) accepts
one character at a time from the keyboard. The RDKEY subroutine (short for
readkey) calls KEYIN or BASICIN and handles the onscreen cursor. The third

. subroutine is named GETLN, which stands for get line. By making repeated calls to
RDKEY, GETLN accepts a sequence of characters terminated with a carriage return.
GETLN also provides onscreen editing features.

. RDKEY input subroutine

Your program gets a character from the keyboard by making a subroutine call to
RDKEY at memory location $FDOC. RDKEY sets the character at the cursor position
1o flash and then passes control through the input link KSW to the current input

. subroutine, which is normally KEYIN or BASICIN. 3

RDKEY produces a cursor at the current cursor position, immediately to the right of
the character you last sent to the display (normally by using the COUT routine). The

. aursor displayed by RDKEY is a flashing version of the character that happens to be at
that position on the screen. Usually, a user types new characters on a blank line, so the
next character will normally be a space. Thus, the cursor appears as a blinking i
rectangle. o

KEYIN and BASICIN input subroutines

Apple 1IGS supports 40- and 80-column video displays by using input subroutines
KEYIN and BASICIN. The KEYIN subroutine is used when the 80-column firmware is
inactive; BASICIN is used when the 80-column firmware is active. When called, the

 subroutine waits until the user presses a key and then returns with the key code in the
accumulator.

| Ifthe 80-column firmware is inactive, KEYIN displays a cursor by storing a
checkerboard block in the cursor location, then storing the original character, and
then storing the checkerboard again. If the 80-column firmware is active, BASICIN ,
displays a steady inverse space (rectangle) as a cursor. In an additional operating g
mode, escape mode, the cursor displayed is an inverse video plus sign (+). This i

| indicates that escape mode is active. See the section “Cursor Control” later in this o
chapter for more information about the escape mode. !

|
I

Standard input routines 71

Subroutine KEYIN also generates a random number. While it is waiting for the user to
press a key, KEYIN repeatedly increments the 16-bit number in memory locations 78
and 79 (hexadecimal $4E and $4F). This number continues to increase from 0 to 65535
and then starts over again at 0. The value of this number changes so rapidly that there
is no way to predict what it will be after a key is pressed. A program that reads from the
keyboard can use this value as a random number or as a seed for a random-number
generator.

When the user presses a key, KEYIN accepts the character, stops displaying the cursor,
and returns to the calling program with the character in the accumulator.

Escape codes

Subroutine KEYIN has special functions that you invoke by typing escape codes at the
keyboard. An escape code is obtained by pressing the Esc (Escape) key, releasing it,
and then pressing another key. The key sequences shown are not case sensitive. That
is, Esc followed by A (uppercase) is equivalent to Esc followed by a (lowercase).

Escape codes are used to clear the current line, the rest of the screen, or the whole
screen; to switch from 40-column to 80-column mode and vice versa; and to move the
cursor on the screen. The escape codes that KEYIN follows are listed in Table 4-1.

Cursor control

The Apple IIGS is equipped with four arrow keys. However, these keys do not perform
cursor-movement functions unless the system is specifically told to give them such
functions. The Apple IIGS firmware provides what is called the escape mode, which
activates the arrow keys for cursor moves. One of eight possible escape sequences can
be used to activate the escape mode. As Table 4-1 shows, you can enter escape mode
by pressing Esc followed by an alphabetic key or by pressing Esc followed by one of the
four arrow keys. Recall also that when the 80-column firmware is active, the cursor
display changes to a plus sign (+) when the system is operating in escape mode.

You can continue to use the arrow keys to move around on the screen. As noted in the
table, escape mode terminates when anything other than an arrow key is pressed.

72 Chapter 4: Video Firmware

Table 4-1

Escape codes and their functions

Escape code

Function

Cursor control
Esc A

Esc B
Esc C
Esc D

Cursor control/
entering escape mode
EscI

(or Esc Up Arrow)

Esc]
(or Esc Left Arrow)

Esc K
(or Esc Right Arrow)

Esc M
(or Esc Down Arrow)

Screen/line clearing
Esc @

Esc E
Esc F

Screen format control
Esc 4

Esc 8

Esc-Control-D

Esc-Control-E

Esc-Control-Q

Moves cursor right one space; exits from escape mode
Moves cursor left one space; exits from escape mode
Moves cursor down one line; exits from escape mode

Moves cursor up one line; exits from escape mode

Moves cursor up one line and remains in escape mode

Moves cursor left one space and remains in escape mode

Moves cursor right one space and remains in escape mode

Moves cursor down one line and remains in escape mode

Clears window and moves cursor to its home position
(upper-left corner of screen); exits from escape mode

Clears to end of line; exits from escape mode

Clears to bottom of window; exits from escape mode

Switches from 80-column display to 40-column display if
80-column firmware is active, sets links to BASICIN and
BASICOUT, restores normal window size; exits from escape
mode

Switches from 40-column display to 80-column display by
enabling 80-column firmware, sets links to BASICIN and
BASICOUT, restores normal window size; exits from escape
mode

Disables control characters; only carriage returns, line
feeds, bells, and backspaces have effects when printing is
performed

Reactivates control characters

If 80-column firmware is active, deactivates 80-column
firmware, sets links to KEYIN and COUT1, restores normal
window size, exits from escape mode

Standard input routines 73

GETLN input subroutine

Programs often need strings of characters as input. Although you can call RDKEY
repeatedly to get several characters from the keyboard, there is a more powerful
subroutine you can use to get an edited line of characters. This routine is named
GETLN, which stands for get line; GETLN starts at location $FD6A. Using repeated calls
to RDKEY, GETLN accepts characters from the standard input subroutine—usually
KEYIN—and puts them into the input buffer located in the memory page from $200 to
$2FF. GETLN also provides the user with onscreen editing and control features. These
are described in the next section, “Editing With GETLN.”

GETLN displays a prompting character, called a prompt. The prompt indicates to the
user that the program is waiting for input. Different programs use different prompt
characters to help remind the user which program is requesting input. For example,
an INPUT statement in a BASIC program displays a question mark (?) as a prompt.
The prompt characters used by Apple IIGS programs are shown in Table 4-2.

GETLN uses the character stored at location 51 (hexadecimal $33) as the prompt
character. In an assembly-language program, you can change the prompt to any
character that you wish. In BASIC or in the Monitor, changing the prompt character
has no effect because both BASIC and the Monitor restore the prompt to their original
choices each time they request user input.

Table 4-2

Prompt characters

Prompt

character Program requesting input

? User’s BASIC program (INPUT statement)
] Applesoft BASIC

> Integer BASIC

* Monitor

Mini-assembler

As you type an input character string, GETLN sends each character to the standard
output routine, normally COUT1, which displays the character at the previous cursor
position and puts the cursor at the next available position on the display, usually
immediately to the right of the original position. As the cursor travels across the
display, it indicates the position where the next character will be displayed.

GETLN stores'the characters in its buffer, starting at memory location $200 and using
the X register to index the buffer. GETLN continues to accept and display characters
until you press Return. Then it clears the remainder of the line the cursor is on, stores
the carriage return code in the buffer, sends the carriage return code to the display,
and returns to the calling program.

74 Chapter 4: Video Firmware

it o et ko e o

Pte e et beed

Pt hd Y

The maximum line length that GETLN can handle is 255 characters. If the user types
more than 255 characters, GETLN sends a backslash (\) and a carriage return to the
display, cancels the line it has accepted so far, and starts over. To warn the user that
the line is getting full, GETLN sounds a bell (tone) at every keypress after the 248th.

Editing with GETLN

The subroutine GETLN provides the standard onscreen editing features used with
BASIC interpreters and the Monitor. Any program that uses GETLN for reading the
keyboard offers these features. For an introduction to editing with GETLN, refer to the
Applesoft Tutorial.

Cancel line: Any time you are typing a line, pressing Control-X causes GETLN to
cancel the line. GETLN displays a backslash (\) and issues a carriage return and then
displays the prompt and waits for you to type a new line. GETLN automatically cancels
the line when you type more than 255 characters, as described earlier.

Backspace: When you press the Backspace key, the Back Arrow key (¢, or the Delete
key, GETLN moves its buffer pointer back one space, deleting the last character in its
buffer. It also sends a backspace character to the routine COUT, which moves the
display position back one space. If you type another character now, it will replace the
character you backspaced over, both on the display and in the line buffer. Each time
you press the Backspace key, the cursor moves left and deletes another character until
you reach the beginning of the line. If you then press Backspace one more time, you
cancel the line. If the line is canceled this way, GETLN issues a carriage return and
displays the prompt.

Retype: The function of the Retype key (=) is complementary to the function of the
Backspace key. When you press Retype, GETLN picks up the character at the display
position just as if it had been typed on the keyboard. You can use this procedure to
pick up characters that you have just deleted by backspacing across them. You can use
the backspace and retype functions with the cursor-motion functions to edit data on
the display. For more information about cursor motion, see the section “Cursor
Control” earlier in this chapter.

Keyboard input buffering

In versions of the Apple II prior to the Apple IIGS, if a user pressed a key while a
program was processing the previous keystroke, characters that the user was typing into
the program were in danger of being lost. The Apple IIGS allows you to use keyboard
input buffering to prevent the loss of keystrokes.

The user can select keyboard input buffering through the Control Panel program. If the
Event Manager is enabled, the type-ahead buffer can process an unlimited number of
key presses.

Standard input routines 75

Standard output routines

The Monitor firmware output routine is named COUT (pronounced C-ouf), which
stands for character out. The COUT routine normally calls COUT1, which sends one
character to the display, advances the cursor position, and scrolls the display when
necessary. The COUT1 routine restricts its use of the display to an active area called
the text window, described later in this chapter.

BASICOUT is used instead of COUT1 when the 80-column firmware is active.
Subroutine BASICOUT is essentially the same as COUT1: BASICOUT displays the
character in the accumulator on the display screen at the current cursor position and
advances the cursor. When BASICOUT returns control to the calling program, all
registers are intact.

COUT and BASICOUT subroutines

When you call COUT (or BASICOUT) and send a character to COUT1, the character is
displayed at the current cursor position, replacing whatever was there. COUT1 then
advances the cursor position one space to the right. If the cursor position is at the right
edge of the window, COUT1 moves the cursor to the leftmost position on the next line
down. If this moves the cursor past the end of the last line in the window, COUT1
scrolls the display up one line and sets the cursor position at the left end of the new
bottom line.

The cursor position is controlled by the values in memory locations 36 and 37
(hexadecimal $24 and $25). Subroutine COUT1 does not display a cursor, but the
input routines COUT1 and C3COUT1, described in the next section, do display and
use a cursor. If another routine displays a cursor, that routine will not necessarily put
the character in the cursor position used by COUT1.

Control characters with COUT1 and C3COUTI

Subroutine COUT]1 is the entry point that is active for character output in 40-column
mode. Entry point C3COUT1 is active when the system is in 80-column mode.
Subroutines COUT1 and C3COUT1 do not display control characters. Instead, the
control characters listed in Tables 4-3 and 4-4 are used to initiate action by the
firmware. Other control characters are ignored. Most of the functions listed here can
also be invoked from the keyboard, either by typing the control character listed or by

aroo wehiivunGu 4 WG noy vualy, Giuder v ey ling e -cutia vifQharaact udecd v Uy -
using the appropriate escape code, as described in the section “Escape Codes” earlier
in this chapter.

76 Chapter 4: Video Firmware

1 o~ | _a

Ll el o P PN PN PN PN NN N N

-~ Table 4-3 i
Control characters with 80-column firmware off 1

. Control character Action taken by COUTI

Control-G Produces user-defined tone (Control Panel menu) i
. Control-H Causes backspace i
- Control-J Causes line feed J
Control-M Causes carriage return

- Control-A {char} First character output after Control-A becomes new cursor. If
Delete key is first character, default prompt is restored.

Table 4-4
Control characters with 80-column firmware on

Control character Action taken by C3COUTI I

Control-E Turns cursor off

Control-F Turns cursor on
Control-G Produces user-defined tone (Control Panel menu) ':
Control-H Causes backspace I
.~ Control-J Causes line feed ‘
Control-K Clears from cursor position to end of screen ff
Control-L Causes form feed |
Control-M Causes carriage return i
Control-N Changes to normal display format I
Control-O Changes to inverse display format I
Control-Q Sets 40-column display ‘
Control-R Sets 80-column display ‘s
Control-S Stops listing of characters until another key is pressed {
Control-U Deactivates enhanced video firmware 1
- Control-V Scrolls display down one line, leaving cursor in current position it
Control-W Scrolls display up one line, leaving cursor in current position ;E
Control-X Disables MouseText character display and uses inverse 1;
uppercase characters '
Control-Y Homes cursor to upper-left corner ,
Control-Z Clears line on which cursor resides |
Control-[Enables MouseText character display by mapping inverse ‘f
uppercase characters to MouseText characters f
Control-\ Moves cursor position one space to right; from edge of window, i
moves to left end of next line i
Control-] Clears from cursor position to right end of line i
Control-_ Moves cursor up one line with no scroll I
Control-A Goes to XY; using next two characters minus 32 as 1-byte X and Y "

values, moves cursor to CH=X, CV=Y (Pascal)

Control-A {char} First character output after Control-A becomes new cursor. If
Delete key is first character, default prompt is restored. This I
works only when using BASIC links, not Pascal output links. i

Standard output routines 77 i

Inverse and flashing text

Subroutine COUT1 can display text in normal format, inverse format, or with some
restrictions flashing format. The display format for any character in the display
depends on two factors: the character set currently being used and the setting of the
two high-order bits of the character’s byte in the display memory.

As it sends your text characters to the display, COUT1 sets the high-order bits
according to the value stored at memory location 50 (hexadecimal $32). If that value is
255 (hexadecimal $FF), COUT1 sets the character display to normal format. If that
value is 63 (hexadecimal $3F), COUT1 sets the character display to inverse format. If
the value is 127 (hexadecimal $7F) and if you have selected the primary character set,
the characters will be displayed in flashing format. Note that the flashing format is not
available in the alternate character set. Table 4-5 shows the effect of the mask value on
particular parts of the character set.

Table 4-5
Text format control values

Mask Value
(dec) (hex) Display format

255 $FF Normal, uppercase, and lowercase
127 $7F Flashing, uppercase, and symbols
63 $3F Inverse, uppercase, and lowercase

To control the display format of the characters, routine COUT1 uses the value at
location 50 as a logical mask to force the setting of the two high-order bits of each
character byte it puts into the display page. It does this by performing a logical AND
operation on the data byte and mask byte. The resulting byte contains a 0 in any bit
that was a 0 in the mask. BASICOUT, used when the 80-column firmware is active,
changes only the high-order data bit.

< Note: If the 80-column firmware is inactive and you store a mask value at location 50
with zeros in its low-order bits, COUT1 will mask those bits in your text. As a result,
some characters will be transformed into other characters. You should set the mask
values only to those given in Table 4-5.

If you set the mask value at location 50 to 127 (hexadecimal $7F), the high-order bit of
each resulting byte will be 0 and the characters will be displayed either as lowercase or
flashing, depending on which character set you selected. In the primary character set,
the next-highest bit, bit 6, selects flashing format with uppercase characters. With the
primary chardcter set, you can display lowercase characters in normal format and
uppercase characters in normal, inverse, and flashing formats. In the alternate
character set, bit 6 selects lowercase or special characters. With the alternate character
set, you can display uppercase and lowercase characters in normal and inverse
formats.

78 Chapter 4: Video Firmware

R e

R

Other firmware 1/0 routines

In addition to the read and write character routines described above, the Apple 1IGS
firmware also includes several routines that provide convenient screen-oriented I/O
functions. These functions are listed in Table 4-6 and are described in detail in
Appendix C, “Firmware Entry Points in Bank $00.”

Important

Appendix C Is the official list of all entry points that are currently valid and for
which continued support will be provided in future revisions of this product.

Table 4-6 ,
Partial list of other Monitor firmware 1/O routines
Location Name Description
$FCOC CLREOL Clears to end of line from current cursor position
$FCOE CLEOLZ Clears to end of line using contents of Y register as cursor
position
$FC42 CLREOP Clears to bottom of window
$F832 CLRSCR Clears low-resolution screen
$F836 CLRTOP Clears top 40 lines of low-resolution screen
$FDED couT Calls output routine whose address is stored in CSW
(normally COUT1)
$FDFO0 COUuT1 Displays character on screen
$FD8E CROUT Generates carriage return
$FD8B CROUTI1 Clears to end of line and then generates carriage return

$FDOA GETLN Displays prompt character; accepts string of characters by
means of RDKEY

$F819 HLINE Draws horizontal line of blocks
$FCs8 HOME Clears window and puts cursor in upper-left corner of
window

$FD1B KEYIN With 80-column firmware inactive, displays checkerboard
cursor; accepts characters from keyboard

$F800 PLOT Plots single low-resolution block on screen

$FO4A PRBL2 Sends 1 to 256 blank spaces to output device

$FDDA PRBYTE Prints hexadecimal byte

$FDE3 PRHEX Prints 4 bits as hexadecimal number

$F941 PRNTAX Prints contents of A and X in hexadecimal format

$FDOC RDKEY Displays blinking cursor; goes to standard input routine
(normally KEYIN or BASICIN)

$F871 SCRN Reads color of low-resolution block

$F864 SETCOL Sets color for plotting in low-resolution block
$FC24 VTABZ Sets cursor vertical position

$F828 VLINE Draws vertical line of low-resolution blocks

Other firmware 1/O routines 79

T}\e text window

After starting the computer or after a reset operation, the firmware uses the entire
display for text. However, you can restrict text video activity to any rectangular
portion of the display that you wish. The active portion of the display is called the fext
window. COUT1 (or BASICOUT) puts characters into the window only; when it
reaches the end of the last line in the window, it scrolls only the contents of the
window.

You can control the amount of the screen that the video firmware reserves for text by
modifying memory directly. You can set the top, bottom, left side, and width of the
text window by storing the appropriate values in four locations in memory. This allows
your programs to control the placement of text in the display and to protect other
portions of the screen from being overwritten by new text.

Memory location 32 (hexadecimal $20) contains the number of the leftmost column
in the text window. This number normally is 0, the number of the leftmost column of
the display. In a 40-column display, the maximum value for this number is 39
(hexadecimal $27); in an 80-column display, the maximum value is 79 (hexadecimal
$4F).

Memory location 33 (hexadecimal $21) holds the width of the text window. For a 40-
column display, the width normally is 40 (hexadecimal $28); for an 80-column
display, it normally is 80 (hexadecimal $50).

Memory location 34 (hexadecimal $22) contains the number of the top line of the text
window. This normally is 0, the topmost line in the display. Its maximum value is 23
(hexadecimal $17).

Memory location 35 (hexadecimal $23) contains the number of the bottom line of the
screen. Its normal value is 24 (hexadecimal $18), the bottom line of the display. Its
minimum value is 1.

After you have changed the text window boundaries, the appearance of the screen will
not change until you send the next character to the screen.

80 Chapter 4: Video Firmware

e e T i

Chapter 5

Serial-Port
Firmware

81

This chapter covers the features of the serial communications firmware. The

Apple IIGS serial-port firmware provides serial communications for external devices,
such as printers and modems. The Apple IIGS serial-port firmware uses a two-channel
Zilog Serial Communications Controller chip (SCC8530) and RS-422 drivers. The
driver firmware emulates the functionality of the Apple Super Serial Card (SSC) and
supports input/output buffering as well as background printing. The firmware also
implements a number of calls that the application can make to control the new
features.

Input/output buffering and background printing are done on an interrupt basis and
can use any buffer size up to 64K at any location that the application wishes. I/O
buffering is transparent for BASIC and Pascal. An application can make a function call
that starts background printing. The function call copies the data into the background
printing buffer and then returns control to the application. Data is fed to the printer
automatically until the entire contents of the buffer have been sent to the printer.

Note that AppleTalk, when active, requires the use of one of the two available serial
channels. Therefore, only two of these three—AppleTalk, serial port 1, and serial
port 2—are allowed to be active at any one time. The Control Panel program ensures
that at least one serial port is made inactive when AppleTalk has been selected. You
can't initialize the serial-port firmware when the channel is being used by AppleTalk.
Both port 1 and port 2 can be configured as either printer or communications
(modem) ports.

You can set default parameters for the serial ports through the Control Panel firmware.

The application program can temporarily change the parameter values by sending
control sequences to the serial-port firmware.

Compadtibility

The commands used to communicate with the serial-port firmware are essentially the
same as those used with the SSC. However, many existing programs using these ports
are not compatible with the Apple IIGS. Many programs, particularly
communications packages, send their output directly to the hardware; the Apple 1IGS
hardware no longer uses hardware different from that used on the SSC. Print programs
and applications written in BASIC and Pascal are more likely to work.

One other difference between the Apple IIGS serial-port firmware and other serial-
port firmware is in error handling. In the SSC, as well as in the Apple Ilc firmware,
when a character with an error is received, the character in error is not deleted from
the input stream. The Apple IIGS firmware does delete the character from the input
stream and sets a bit to record the fact that an error was encountered.

82 Chapter 5: Serial-Port Firmware

-t cC 0 MmN AN ~< "

N A

—

Operating modes

The serial-port firmware has three main operating modes: printer mode,
communications mode, and terminal mode. You set these modes through the
Control Panel. An application program can change these modes by sending
command sequences to the serial port.

% Note: If you are writing software that depends on the serial-port firmware being in a
given operating mode, make sure that your documentation tells the user to set up
the firmware using the Control Panel in the proper way. q

Printer mode

When in printer mode, the serial-port firmware can send data to a printer, a local
terminal, or some other serial device.

Communications mode

When in communications mode, the firmware can operate with a modem. From
BASIC, while the serial firmware is set for communications mode, the firmware can
enter a special mode, called terminal mode, in which the Apple IIGS acts like an
unintelligent terminal.

In terminal mode, the Apple IIGS acts like an unintelligent terminal. All the characters
typed are passed to the serial output (except the command strings), and all serial input

Terminal mode
goes directly to the screen. !

You enter terminal mode from the BASIC interface by typing IN#n and then typing I
the current command character followed by a T. The prompt character changes to a |
flashing underline (), indicating that terminal mode is active. You exit terminal
mode by typing the current command character followed by a Q.

You can use terminal mode with buffering enabled. This minimizes character loss at
higher baud rates. Enable buffering with the Buffering Enable (BE) serial command,
described below.

Many remote computers send a line feed (LF) after a carriage return (CR). When using
terminal mode with such a computer, use the Masking Enable (ME) serial control
command to mask any line feeds that immediately follow carriage returns.

Operating modes 83

Handshaking

Communications-equipment manufacturers have devised a variety of handshaking
schemes. Apple IIGS accommodates these various schemes by providing several
hardware and software handshaking options.

Hardware, DTR and DSR

When the DTR/DSR option is active, the data terminal ready (DTR) and data set ready
(DSR) lines control the data flow into and out of the system. The Apple IIGS transmits
characters only when the DSR line is enabled; the DTR line tells the device when the
host is ready to accept data. The default Control Panel setting enables hardware
handshaking. If this option is disabled, the DSR line is not checked on transmission
and the DTR line will not be toggled during reception (see Figures 5-1 and 5-2). The
target device’s firmware determines whether these lines mean anything during data
transfer.

The data carrier detect (DCD) line controls modem communications. If you enable
the DCD handshake option, the Apple IIGS serial-port firmware will transmit
characters only when the DCD line is enabled. The DCD option has no direct effect
on character reception. This mode provides compatibility with the SSC, which uses
DCD as a handshake line.

Tx
P> Tx
DSR ’
R Remote
Apple llcs Rx Modem computer

¢ RX

DTR J
ﬁ

Figure 5-1
Handshaking when DTR/DSR option Is turned on

84 Chapter 5: Serlal-Port Firmware

Tx
—
Remote
Apple lIcs SR computer
-
Figure 5-2

Handshaking when DTR/DSR option is turned off

Software, XON and XOFF

If an XOFF ($13) character is received from a device attached to the SCC, the firmware
halts character transmission until an XON ($11) character is received. This option
works in addition to the hardware handshake. In printer mode, the firmware disables

this function.
Tx
—
Remote
Apple liGs - computer
<
Figure 5-3

Handshaking via XON/XOFF

Handshaking 85

Operating commands

Apple IIGS control commands, embedded in the serial output flow, are invoked by
BASIC or Pascal output routines. For each of the operating modes (printer or
communications), you can control many aspects of your data transmissions, such as
baud rate, data format, and line-feed generation, by sending control codes as
commands to the firmware. All commands are preceded by a command character
and optionally followed by a return character ($0D). The carriage return is allowed to
maintain compatibility with the SSC. The format of the commands is as follows:

{ command-character) {command-string) Return

The command character usually is Control-I in printer mode and Control-A in
communications and terminal modes. In the examples in the following text,
Control-I is used unless the command being described is available only in
communications mode or terminal mode. A return character is represented by its
ASCII symbol, CR.

There are three types of command formats:

O a number, represented by n, followed by an uppercase letter with no space between
the characters (for example, 4D to set data format 4)

O an uppercase letter by itself (for example, R to reset the serial-port firmware)

0 an uppercase letter followed by either a space or no space and then either E to
enable or D to disable a feature (for example, LD to disable automatic insertion
of line-feed characters)

The allowable range of n is given in each command description that follows.

< Note: All options, such as baud rate, parity, and line length, can be configured
from the Control Panel (see Chapter 10, “Mouse Firmware”).

Serial-port firmware must be reinitialized after changing options from the Control
Panel for the new values to take effect.

86 Chapter 5: Serial-Port Firmware

To
PR
Fo

WR.

S€(

| The command character

The normal command character is Control-I (ASCII $09) in printer mode and bl
- Control-A (ASCII $01) in communications mode. If you want to change the command ;

character from Control-I to another command character (for example, Control-W), {

send Control-W to Control-1. To change back, send Control-I to Control-W. No j

return character is required after either of these commands.

& Note: The SSC allows you to send the current command character through the '4
. output stream by sending the character twice in a row. The Apple IIGS does not |
allow this; the character will not be output. To send the command character
through the serial port, you must temporarily change to an alternate command
character. For example, if the current command character is Control-I and you
want to send a Control-I out the serial port, then send

Control-I Control-A Control-I Control-A Control-I

The first two characters change the command character to a Control-A. The third
character is the Control-I you wanted to send. The fourth and fifth characters
restore the command character to Control-I again. Remember, though, that you
can disable all command-character parsing by using the Zap command.

To generate this command character in Applesoft BASIC, enter
PRINT CHRS (9); "command-string" i
For Pascal, enter

WRITELN (CHR(9), 'command-string') ;

The following example shows how to generate the command from a BASIC program:

10 D$ = CHRS(4): REM Sends Control-D

20 AS$ = CHRS$(9): REM Sends Control-I

30 PRINT D$; "PR#1": REM Establishes link: BASIC to port 1
40 PRINT AS; "6B": REM Changes to 300 baud

50 . . . REM Continue program

Command strings

A command string is a letter sometimes with a number prefix and sometimes with an E
or a D suffix. Command strings select the option to be used; for instance, they may
change the baud rate, select the data format, and set the parity. The preceding
example shows commands generated in BASIC; the command strings in the following /
sections are generated from the keyboard. ?

Operating commands 87

Commands useful in printer and communications modes

Y
The following commands are most useful in printer and communications modes. i
Baud rate, nB
Tc
You can use the nB command to select the baud rate for the serial-port firmware. For E
example, to change the baud rate to 135, send Control-I 4B CR to the serial-port 5
firmware (see Table 5-1). —
0
Table 5-1 1
Baud-rate selections ”
n Baud rate n Baud rate 3
0 Default* 8 1200 <
1 50 9 1800
2 75 10 2400 .
3 110 11 3600 Li
4 134.5 12 4800 1
5 150 13 7200 , tc
6 300 14 9600 cl
7 600 15 19,200 ye¢
* You set the default by using the Control
Panel. Er
Data format, nD A
You can override the Control Panel setting that specifies the data format by using the g
nD command. Table 5-2 shows how many data bits and stop bits correspond to each
value of n. For example, Control-I 2D makes the serial-port firmware transmit each
character in the form of 1 start bit (always transmitted), 6 data bits, and 1 stop bit. H
Table 5-2 Se
Data-format selections W
at
Data Stop p
n bits bits P
0 8 1 X
1 7 1 X
2 6 1
3 5 1
4 8 2
5 7 2
6 6 2
7 5 2
88 Chapter &: Serial-Port Firmware

Parity, nP

You can use the nP command to set the parity that you want to use for data
transmission and reception. Four parity options are available. These are listed in
Table 5-3.

Table 5-3
Parity selections

n Parity value

0 None (default value)
1 0Odd

2 None

3 Even

& Note: The SCC 8530 does not support MARK and SPACE parity.

line length, nN

The line length is set by sending Control-I nN. The number n can be in the range of 1
to 255 characters. For example, if you send Control-I 75N, the line length is set to 75

you set n to 0, formatting is disabled.

Enable line formatting, CE and CD

A forced carriage return is invoked after a lineful of characters by sending Control-I
CE. For example, Control-I 75N (see “Line Length” above) and Control-I CE cause a
forced carriage return after 75 characters are typed on a line.

Handshaking protocol, XE and XD

Sending Control-I XE CR or Control-I XD CR to the serial-port firmware determines
whether the firmware looks for any XOFF ($13) character coming from a device
attached to the SCC. It responds by halting transmission of characters until the serial-
port firmware receives an XON ($11) character from the device, signaling the SCC to ,
continue transmission. In printer mode, this function normally is disabled. |

XE = Detect XOFF, await XON.
XD = Ignore XOFF.

Operating commands 89

Keyboard input, FE and FD

The FD command is used to make the serial-port firmware ignore keyboard input. For
example, you can include Control-I FD CR in a program, followed by a routine that
retrieves data through the serial-port firmware, followed by Control-I FE CR to turn the
keyboard back on. As a default, the serial-port firmware keyboard input is enabled.

FE = Insert keystrokes into serial-port firmware input stream.
FD = Disable keyboard input.

Automaditic line feed, LE and LD

The automatic line-feed command causes the serial-port firmware to generate and
transmit a line-feed character after each return character. For example, Control-I LE
CR to print listings or double-spaced text.

LE = Add line feeds after each carriage return output.
LD = Do not add line feeds after carriage return output.

Reset the serial-port firmware, R

The R command resets the serial-port firmware, cancels all previous commands to the
serial-port firmware and reinstalls the Control Panel default settings. Sending
Control-I R CR to the serial-port firmware has the same effect as sending PR#0 and N#0
to a BASIC program and then resetting the serial-port firmware. This call also
relinquishes any memory obtained from the Memory Manager for buffering purposes.

Suppress control characters, Z

The Z command causes all further commands to be ignored. This command is useful
when the data you are transmitting (for instance, graphics data) contains bit patterns
that the serial-port firmware could mistake for control characters.

Sending Control-I Z CR to the serial-port firmware prevents the firmware from
recognizing any further control characters, whether from the keyboard or contained
in a stream of characters sent to the serial-port firmware. All tabbing and line
formatting are disabled after a Control-I Z command.

Important

The only way to reinstate command recognition after the Z command is either to
initialize the serial-port firmware or to use the SetModeBits call described later In
this chapter.

Q0 Chapter 5: Serial-Port Firmware

~ |

e OOttt A m

L D A Y, D o N S 4

Commands useful in communications mode

The following commands are most useful in communications mode.

Echo characters to the screen, EE and ED

The EE and ED commands are used to display (echo) or not to display a character on §
the video screen during communication. For example, if you send Control-A ED CR,
the serial-port firmware disables the forwarding of incoming characters to the screen.

- This command can be used to hide a password entered at a terminal or to avoid the
double display of characters.

EE = Echo input.
ED = Don’t echo input.

Mask line feed in, ME and MD

If you send Control-A ME to the serial-port firmware, the firmware will ignore any
incoming line-feed character that immediately follows a return character.

Input buffering, BE and BD

The BE and BD commands control input and output communication buffering.

Terminal mode, T and @

The T command transfers you to terminal mode. In this mode, you can communicate
with another computer or a computer time-sharing service. Terminal mode is entered
through the BASIC interface. This means that you must initialize the firmware by
typing IN#n and then sending Control-AT.

% Note: IN#n sets the port input link, and PR#n sets the port output link. The
lowercase n indicates the port number.

To quit terminal mode, send Control-AQ.

Often, when communicating with another computer in terminal mode, you want to
send a break character to signal the other computer that you wish to signal the end of
the current segment of transmission. To send a break character, send Control-AS CR.
This command causes the serial hardware to transmit a 233-millisecond break signal,
recognized by most time-sharing systems as a sign-off signal. #

Operating commands Q1

Table 5-4 summarizes terminal-mode command characters.

E
Important 3
If you enter terminal mode and can’t see what you type echoed on the video
screen, the modem link may not yet be established or you may need to use the C
Echo Enable command (Control-A EE). $
$
Table 5-4 » %
Terminal-mode command characters i Y
Character Description EI
Bt
S Transmits 233-millisecond break (all zeros) i N
T Enters terminal mode $
Q Exits terminal mode f
N
Tab in BASIC, AE and AD
If you send Control-I AE CR to the serial-port firmware, the BASIC horizontal position E
counter is left equal to the column count. Tabbing initially is disabled. It is up to the
program to enable this feature if tabbing is desired. I
AE = Implement BASIC tabs. E
AD = Do not implement BASIC tabs. $
F
€
Programming with serial-port firmware 5
The serial-port firmware provides two interfaces: one for BASIC and one that adheres “
to the Pascal 1.1 firmware protocol.
¢ Note: To use the serial-port firmware, you must set the 65816 data bank register to
$00, shift to emulation mode (e bit set to 1), and then issue your call. All entry :
points are in the $Cn00 space in bank $00. (This applies to all calls to serial-port T
firmware.) S
R
I
R
v
S
C

92 Chapter 5: Serial-Port Firmware

BASIC interface

The following entry points accommodate the BASIC interface (n is the slot number, !
which can be 1 or 2):

Cn00 BASIC initialization (also outputs character in the accumulator)
$Cn05 BASIC read character (character returned to accumulator; X, Y preserved)
$Cn07 BASIC write character (character passed through accumulator; X, Y preserved)

Although the call to $CNOO coincidentally outputs the character in the accumulator,
you should not use this side effect as the standard means of character output. Rather,
you should use the $CNO7 entry point for output of all but the first character (that is,

initialize the serial port only once).

When you type IN#n or PR#n (setinput or output link), BASIC makes a call to
$Cn00 after it sets either the KSWL or CSWL link to $Cn00. When the serial-port
firmware has control, it alters the links so that they point to the firmware Read and
Write routines.

Pascal protocol for assembly language

If you are a machine-language programmer, you should use the Pascal 1.1 protocol to
communicate with the serial-port firmware. The Pascal 1.1 protocol interface is more
flexible than the BASIC protocol. The Pascal 1.1 protocol uses a branch table in the
$Cn00 page to indicate where each of the service routines begins (see Table 5-5).

For example, to reach the Read routine, read the value contained in location $Cn0OE
(suppose it is $18) and then execute a JSR instruction to the address (for example,
$Cn18). Table 5-6 lists the I/O routine offsets and registers.

% Note: The Pascal interface assumes that the application supplies a line feed after a
carriage return, overriding the Control Panel setting. If the application does not
supply line feeds, it should send the LE (line-feed generation) call described in the
section “Command Strings" earlier in this chapter.

Table 5-5

Service routine descriptions and address offsets
Address

Routine name offset Description

Initialization $Cn0OD Reset port, restore Control Panel defaults

Read $CnOE Wait for and get next character

Write $CnOF Send character

Status $Cn10 Inquire if character has been received

Control $Cn12 Access extended interface commands

Programming with serial-port firmware @3

Table 5-6

I/O routine offsets and registers for Pascal 1.1 firmware protocol

Address
offset When used X register Y register A register
$Cn0OD Initialization
On entry $Cn $n0
On exit Error code Undefined Undefined
$CnOE Read
On entry $Cn $n0
On exit Error code Undefined Character read
$CnOF Write
On entry $Cn $n0 Character to write
On exit Error code Undefined Undefined
$Cn10 Status
On entry $Cn $n0 Request (0 or 1*
On exit Error code Undefined Undefined
Extended
interfacet
$Cni12 Control Command list Command list Command list
On entry address (8..15) address (16..23) address (0..7)
On exit Undefined Undefined Undefined

* Request code 0 means Are you ready to accept output? Request code 1 means Do you

121 2 i tn the ctatine remisct jc in tho ~aemr kit Ao £l
have input veady? OR exit, the reply 16 the status requast is in the cary bit, as follows:
Carry = 0 means no; Carry = 1 means yes.

1 If the function call returns with the carry bit set, an error is returned in the accumulator. The

status call can return a “bad request code” ($40). Result codes returned by the extended
interface are as follows:

Error type Explanation Error code
No error No problem detected. $0000
Bad call Error Illegal command used. $0001

Bad parameter count Parameter count not consistent with command requested. $0002

Q4 Chapter 5: Serial-Port Firmware

< m

Lo« B

Error handling

- When the serial-port firmware receives a character from the hardware, it checks the

- error status register in the SCC. If the character has a framing or parity error (assuming
that the parity option is not set to None), the character is deleted from the input
stream and the appropriate bit-mode bit is set. You can use the GetModeBits call to
read these two bits (one for framing errors and the other for parity errors) to
determine whether at least one receive error has occurred. After you read these bits,
you should clear them (using SetModeBits) so that future errors can be detected. Error
checks should be performed periodically so that you will know whether received data is
accurate.

Buffering

Input and output communications and background printing can be transparently
buffered. Each port has two buffers: one for input and one for output. Default buffers
are 2048 characters each. If you wish to use a buffer larger than this, you must pass the
address and length to the firmware by way of the extended-interface instruction
SetinBuffer or SetOutBuffer. You can allocate up to 64K bytes.

% Note: In systems with little RAM remaining, you can reduce the size of the I/O
buffers to 128 bytes.

You can enable buffering by using the PR#n command from BASIC if the buffering

meatlmin ian Lid il ke to eV AP mw s B i R anPs I e e e

option has been set in the Control Panel. If the buffering optxon has not been set, you
can still enable buffering from the keyboard or by sending the BE command through
the output flow. When buffering is enabled for output, characters sent to the firmware
are placed in a FIFO (first in, first out) queue in the output buffer. These characters are
sent out on an interrupt basis whenever the hardware is ready to send another
character.

The XON and XOFF characters are not queued; they are sent directly through the
channel so that the data flow to the Apple 1IGS may be stopped or restarted
immediately. Characters received in the buffering mode are placed in the input
queue, and all read calls return characters from the queue. Any XON and XOFF
characters received are not queued, so the output flow can be halted or resumed
immediately upon reception.

When the input queue becomes more than three-fourths full, the firmware attempts to
disable the handshake. The firmware sends an XOFF character (if XON/XOFF
handshaking is enabled), or the DTR line is disabled (if DSR/DTR handshaking is
enabled). You can determine, through your application program, that the handshake
has been disabled by inspecting the input flow mode bit using the GetModeBits call in
the extended interface. The firmware reenables the handshake as soon as the receive
queue fills less than one-fourth of the input buffer.

Buffering 95

You can determine the number of characters in the input queue or the amount of space
left in the output queue by using the InQStatus and OutQStatus commands in the
extended interface. Also, the InQStatus call returns the amount of time elapsed since
the last character was queued. This allows a program to keep track of the input stream
activity level even though it is not involved in the interrupt process.

% Note: The InQStatus elapsed-time counter functions correctly only if the heartbeat
interrupt task has been started. The heartbeat interrupt task is a set of functions
called by interrupt code that run automatically at one-thirtieth of a second
intervals.

Interrupt notification

When a channel has buffering enabled, the firmware services all interrupts that occur
on that channel. If an application wishes to service interrupts for a given channel
itself, it should disable buffering using the BD command in the output flow. If the
buffering mode is off, the serial-port firmware will not process any interrupts. The
system interrupt handler will transfer control to the user’s interrupt vector as $03FE in
bank $00. (This is the ProDOS user’s interrupt vector.) The user’s interrupt service
handler is then completely responsible for all serial-port firmware interrupt service.

If the application does not want to disable buffering, but does wish to be notified when
a certain type of serial interrupt occurs, it can instruct the firmware to pass control to
an application-installed routine after the system has serviced the interrupt. The
application tells the firmware when it wishes to be notified and establishes the address
of the application’s completion routine by using the SetIntIinfo routine. (See

Chapter 8, “Interrupt-Handler Firmware,” for more information about interrupt
routines.) This call guarantees that the completion routine will get control when a
specific type of interrupt occurs, but only after the serial-port firmware has processed
and cleared the interrupt. The application then uses the GetIntInfo routine to
determine which interrupt condition occurred.

A terminal emulator offers a typical example of when interrupt notification might be
desirable. The emulator usually should perform input and output character buffering,
handshaking, and other such operations. The terminal emulator can be designed to
allow the firmware to handle all character-buffering details. The designer of the
emulator can have the firmware signal the emulator program when the firmware
receives a break character. To enable this special-condition notification, the emulator
application sets the break interrupt-enable function by using the SetIntInfo routine.
Now whenever the firmware receives a break character, the firmware SCC interrupt
handler records and clears the interrupt, finally passing control to the emulator’s
completion routine. This routine calls GetlntInfo, and if the break bit is set, the
completion routine knows that a break character has been received.

96 Chapter 5: Serial-Port Firmware

|

Note that all interrupt sources (except receive and transmit) cause an interrupt on a }i ‘

transition in a given signal. This means that a user’s interrupt handler will get control ‘
- passed to it on both positive and negative transitions in the signals of interest. For

example, a break-character sequence causes two interrupts: one at the beginning of
the sequence and one at the end. The user’s interrupt handler should take this into
account. A routine can always determine the current state of the bits of interest by
using the GetPortStat routine.

The interrupt completion routine executes as part of the firmware interrupt handler
and must run in that environment. In addition, the following environment variables
must be preserved by your routine:

Registers A, X, and Y need not be preserved.

Background printing

Apple 1IGS allows you to print while running an application program. Printing while
another program is running is called background printing. Background printing is
another example of output buffering, as described in the section on buffering: In
background printing, you send a block of characters over a serial channel on an
interrupt basis. The major difference is that the firmware is handed a large number of

!
DBR=$00,e=0,m=1,x=1 {
characters to transmit all at once rather than getting them one at a time. 3
To print in the background, perform the following steps:

1. Issue an Init call through the Pascal interface. This ensures that the firmware and
hardware are active. The hardware characteristics (baud rate, data format, and so
on) will be as specified in the Control Panel.
2. Disable buffering using the BD serial command in case the Control Panel was set to
enable buffering.
3. If you want to change the port characteristics, specify them using either the
SetModeBits call or the Send command in the output flow. \‘

4. Set the output buffer using SetOutBuffer. To use the default buffer, make a call to
GetOutBuffer to ascertain its location.

5. Load the data into the buffer.

6. Start the printing process with SendQueue, passing the length of the buffer data and
the address of the Recharge routine.

al
Background printing 97 }

Recharge routine

Once you start background printing with a SendQueue call, the firmware sends the E
characters periodically, in the background, until the buffer is exhausted. When the last 1
character is removed from the buffer, the firmware executes a JSL to the Recharge ‘ al
routine, whose address was passed when the call to the SendQueue routine was made. C
This application-supplied routine reloads the buffer with the next set of data to be sent, ir
a task that could involve some disk activity if the application is performing background v

printing from the disk. Finally, the routine loads the number of bytes in the new block
of data to be sent to the X and Y registers (these will both be zero in case the 1
background printing is complete) and executes an RTL. Requirements for the Recharge
routine are as follows:

On entry On exit 2
System speed = fast System speed = fast

DBR = $00 DBR = $00

Native mode (thatis, m=0, x =0, e = 0) Native mode, 8-bit m and x (e = 0)

X register = data size (low)
Y register = data size Chigh)

Note that the Recharge routine is called at interrupt time. Therefore, you should E
regard it as an interrupt handler, in the sense that anything it changes must be c
restored. Also note that interrupts are disabled during the time the Recharge routine is li
running. If too much time is spent in this routine, performance degradation of ’
interrupt-critical processes will occur. An interrupt-critical process is one such as 3

AppleTalk that has stringent interrupt-response requirements.

% Note: The firmware reserves the last byte in the data buffer for empty buffer
detection. Make sure that the buffer’s size is 1 byte larger than the amount of data

you place in it. For example, if GetOutBuffer reveals an output buffer of 2048 bytes, II
only data lengths less than 2048 should be passed with the background-printing call d
or Recharge routine. d
P
Ir
E
re
lc
If
98 Chapter 5: Serial-Port Firmware

Extended interface

The Apple IIGS system has extended call features not present in the SSC. These calls
are made through the extended interface and are divided into three groups: hardware
control, mode control, and buffer-management features. A list of the extended
interface calls follows this section.

You can make a call through the extended interface using the following method:

1. Determine the dispatch address by adding the value $CNOO to the value located at
$CN12. The byte at $CN12 is called the optional control routine offset of the Pascal
1.1 protocol.

2. Perform an emulation-mode JSR (DBR = $00) to this dispatch address, with the
address of the command list (CMDLIST) in the appropriate registers as follows:

Register Register value

A Address of CMDLIST (low)

X Address of CMDLIST (medium)
Y Address of CMDLIST (¢high)

Every command list starts with a 1-byte parameter count (not a byte count), a
command code, and space for a result code. The possible result codes returned are
listed in the section “Error Handling" earlier in this chapter.

% Note: If you want to ensure that your application will work with future systems, limit
the use of hardware control calls, particularly the Get SCC and Set SCC calls. If
future systems use hardware other than the current serial chip (SCC 8530), your
hardware control calls will most likely have to be changed.

In the extended serial interface descriptions that follow, a DFB is an assembler
directive that produces a single byte, a DW is an assembler directive that produces a
double byte (16-bits: low byte, high byte), and a DL is an assembler directive that
produces a double word (32 bits, that is, 4 bytes).

Important

Different instructions require that a different number of bytes be reserved for the
return parameters. Be sure that the CMDLIST buffer area to which you point is
large enough to hold all of the bytes of the return parameters for that command.
If your buffer area is not large enough, the system may fail.

Extended Interface

99

Mode control calls

GetModeBits

Returns the current mode bit settings.

CMDLIST DFB $03 ;Parameter count
DFB $00 :Command code
DW $00 ;Result code (output)
DL $00 :ModeBitImage (output)

This call allows the application to determine the status of various firmware operating
modes. Four bytes (32 bits) of mode information are returned. To change any of these
bits, use this call to get the current settings, then alter the bits of interest, and then use
the SetModeBits call to make the actual modification. (To avoid race conditions in
this process, be sure to disable interrupts during the reading, altering, and writing of
the bits.) The meaning of each bit is described below.

SetModeBits
Sets the mode bits.

CMDLIST DFB $03 ;Parameter count
DFB $01 ;:Command code
DW $00 ;Result code (output)
DL ModeBitImage ;(input)

Use this call to alter any of the mode bits whose function is described above. First read
in the bits using GetModeBits, then alter the bits of interest, and then write the bits by
using this call. (Be sure to disable interrupts, as discussed in the GetModeBits
description.) The bits marked Preserve should not be changed; they are informational
only. Altering these bits will confuse the firmware.

ModeBitImage is 4 bytes, where bit 0 is the least significant bit of the lowest addressed
byte and bit 31 is the most significant bit of the highest addressed byte.

[31..24] (Preserve)

[23] 1 = Ignore commands in the output flow
[22] 1 = Framing error has occurred

[21] (Preserve)

[20] 1 = Parity error has occurred

[19..16] (Preserve)

it47..149U} L icokivey

[15] (Preserve)

[14] (Preserve) 1 = 1/O buffering enabled
[13] 1 = DCD handshaking enabled

[12] (Preserve)

[11] 1 = Generate CR at end of line

100 Chapter 5: Serial-Port Firmware

I———

0]
)
18]
1)
6]
15
14
Bl
2
11l
[0

(Preserve) 1 = Input flow halted

(Preserve) 1 = Output flow halted

(Preserve) 1 = Background printing in progress
1 = Echo input to the video screen

1 = Generate LF after CR

1 = XON/XOFF handshaking enabled

1 = Accept keyboard input

0 = Delete LF after CR

1 = DTR/DSR handshaking enabled

(Preserve) 1 = awaiting XON character
(Preserve) 1 = communications mode, 0 = printer mode

- Buffer-management calls

~ GetinBuffer

- CMDLIST

-~ Returns the address and length of the input buffer.
DFB $04 ;Parameter count
DFB $10 ;Command code
DwW $00 ;Result code (output)
DL $00 ;Buffer address (output)
DW $00 ;Buffer length (output)

This call and the one that follows (GetOutBuffer) are used to determine the addresses

- and lengths of the current input and output buffers. If background printing is to be

~ invoked and the application wants to use the default buffer, its address can be retrieved
by these calls.

GetOutBuffer

~ CMDLIST

Returns the address and length of the output buffer.
DFB $04 ;Parameter count
DFB $11 ;Command code
DW $00 ;Result code (output)
DL $00 ;Buffer address (output)
DW $00 ;Buffer length (output)

Extended inferface

101

SetinBuffer Ir
Specifies the buffer to contain the input queue. R
CMDLIST DFB $04 ;Parameter count C
DFB $12 ;Command code
DWW $00 ;Result code (output)
DL Buffer address ;(input)
DW Buffer length ;(input)
This call and the one following (SetOutBuffer) allow the application to change the
location and length of the input or output buffers. A queue buffer can cross bank
boundaries but must be fixed in memory while buffering is active. T
a
SetOutBuffer >
o
Specifies the buffer to contain the output queue. th
CMDLIST DFB $04 ;Parameter count
DFB $13 ;Command code
DWW $00 ;Result code (output)
DL Buffer address ;(input)
DW Buffer length ;(input) C
FlushinQueue
Discards all characters in the input queue.
CMDLIST DFB $02 ;Parameter count
DFB $14 ;Command code
DWW $00 ;Result code (output) : S
This call and the one following (FlushOutQueue) allow the application to flush 1
unwanted data from the input and output Giieues. ;
FlushOutQueue
Discards all the characters in the output queue.
CMDLIST DFB $02 ‘ ;Parameter count ;
DFB $15 ;Command code
DW $00 ;Result code (output)]c:
C
2
t
t

102 Chapter 5: Serial-Port Firmware

: InQStatus

Returns information about the input queue.

- CMDLIST DFB $04 ;Parameter Count i
‘ DFB $16 ;Command Code i
DW $00 ;Result Code (output) |

DW $00 ;:Number of characters in receive queue ;7

(output) i

DwW $00 ;Time since last receive character queued t

(output) 7

. This call and the one following (OutQStatus) call return information about the input ;

and output queues. The InQStatus call additionally returns the number of heartbeat t
- ticks (1 tick = 1/30 second) between the time the last character was queued and the time {
- of the call. Note that for this number to be valid, the application must have turned on ;
- the heartbeat system by making a tool call.

. Out@Status i

I

i i
- Returns information about the output queue. t
CMDLIST DFB $04 :Parameter count 1
DFB $17 ;Command code ':l

DW $00 ;Result code (output) "

DW $00 ;Number of characters until transmit i

queue overflow (output) }

DW $00 ;Reserved (output) '

|

SendQueue il

Launches background printing.

CMDLIST DFB $04 ;Parameter count B
DFB $18 ;Command code &
DW $00 ;Result code (output) [;
DW Data length
DL Recharge address

This call begins the background-printing process. The application must first set the

output buffer address (or use the default buffer) to load the data to be output into the

buffer starting at.the buffer base address. The data then is placed into the buffer. The ;

call to SendQueue then must be made specifying the length of the data in the buffer i

and the 4-byte address of a subroutine (the Recharge routine), which will be called by
~ the interrupt firmware when all characters have been sent. (See the section earlier in

this chapter for further information about Recharge.)

Extended inferface 103

Se
Hardware control calls

W
Refer to the section “Compatibility” at the beginning of this chapter. .
GetPortStat
Returns the port hardware status.
CMDLIST DFB $03 ;Parameter count i
DFB $06 ;Command code
DwW $00 ;Result code (output)
DW $00 ;Port status info (output) C
This call is used to get the current status of the serial channel at the hardware level. Re
There are 16 bits of result. The meaning of these bits is as follows: ;
]
[15..8] (Reserved)
[71 Break/Abort Set to 1 when a break sequence is detected
[6] Tx Underrun Set to 1 when a transmit underrun occurs
(5] DSR State of the input handshake line 1
[4] (Reserved) U
(3] DCD State of the general-purpose input line 4 th
[2] Tx Buff Empty Set to 1 when ready to transmit next character] by
[1] (Reserved) .
[0] Rx Char Avail Set to 1 when a character is available to be read Se
Se
GeiSCC
@1
Returns the value of the specified SCC register.
CMDLIST DFB $04 ;Parameter count
DFB $08 ;Command code
DwW $00 ;Result code (output) U
DFB Register ;SCC register number (input)
DFB $00 ;Value of SCC register (output)
GetSCC returns the value in a specified SCC register. The GetSCC and SetSCC calls G
allow direct access to the serial hardware. (See the SCC 8530 technical manual for a 3 Re
description of the registers in the serial controller chip.) The serial-port firmware C
does not need to be initialized for these calls to work; in fact, these calls should be used
only if the application is handling all serial tasks itself and not using the firmware at all.
Tl
af
as

104 Chapter &: Serial-Port Firmware

SetSCC
' a value into the SCC.

DLIST DFB $04 ;Parameter count

DFB $09 :Command code

DwW $00 ;Result code (output)

DFB Register ;SCC register to write (input)
DFB Value ;Value to write to Register (input)

; is call allows the writing of a register in the SCC.

etDTR

Returns the value of the output handshake line.
CMDLIST DFB $03 ;Parameter count
] DFB $0A ;:Command code

DW $00 ;Result code (output)
Dw $00 ;Bit 7 is the state of DTR (output)

Use this call to find out the current setting of the output handshake line. The state of
this line is returned in the most significant bit of the returned byte. The line may be set
by the SetDTR call.

SetDTR
Sets the value of the output handshake line.

 CMDLIST DFB $03 ;Parameter count
' DFB $0B ;Command code
DW $00 ;Result code (output)
DW DTR state ;Bit 7 is the state of D'TR (input)

- Use this call to set the current mode of the output handshake line.

Getintinfo
Returns the type of interrupt (for use in the interrupt completion routine).
. CMDLIST DFB $03 ;Parameter count
DFB $0C ;Command code
DW- $00 ;Result code (outpub)
DW $00 ;(output)
DL Completion address ;(output)

This call allows the application to determine which type of interrupt caused the
application’s completion routine to be called. The meanings of the bits are the same
. as for SetlIntInfo.

Extended interface

105

Setintinfo

Sets up informational interrupt handling.

CMDLIST DFB $03 ;Parameter count
DFB $0D ;Command code
DWW $00 ;Result code (output)
DwW Interrupt setting ;Coutput)
DL Completion address ;(input)

This call allows the application to specify the types of interrupts that will be passed to
the application’s interrupt routine. The firmware should be enabled and buffering
turned on when this call is made. The types of interrupts and the bits used to enable
them are as shown in Table 5-7.

The extended serial-port commands are summarized in Figures 5-4 and 5-5.

Table 5-7
Interrupt setting enable bits

[15..8] (Reserved) Set these to zero

[71 Break/Abort Break sequence detect

(6] Tx Underrun Transmit underrun detect

[5] CTS Transition on input handshake line
[4] 0 (Reserved)

(3] DCD Transition on general-purpose line
[2] Tx Transmit register empty

[1] 0 (Reserved)

[0] Rx Character available

106 Chapter 5: Serial-Port Firmware

GetinBuffer

GetOutBuffer

Result code 2 Result code 2
Buffer base address 4 Buffer base address 4
Buffer length 2 Buffer length 2

Return location and length
of the receive queue buffer

Return location and length
of the transmit queue buffer

SetinBuffer

Result code

Set location and length
of the receive queue buffer

SetOutBuffer

Result code

Set location and length
of the transmit queue buffer

FlushinQueue

Result code 2

FlushOutQueue

Result code 2

Throw away all characters
in the receive queue

Throw away all characters
in the transmit queue

InQStatus

Result code 2

OutQStatus

Result code 2

Number of characters 2
in receive queue

Number of character spaces 2
left in transmit queue

Number of ticks since
last character arrived

Reserved 2

Return receive queue information

Figure 5-4

Return transmit queue information

Summary of extended serial-port buffer commands

SendQueue

Result code

Begin background output

Extended interface 107

GetModeBits SetModeBits GetPortStat

Result code 2 Result code 2
Bit settings 4 Port hardware status 2
Return frmware mode bits Set firmware mode bits Return the port status
GetSCC SetSCC GetDTR

Result code 2 2 Result code 2

SCC register number 2 2 DTR state (bit 7) 2

Register value read 1 1 Return state of output handshake

Return an SCC 8530 register value Write an SCC 8530 register value _

SetDTR Getintinfo Setintinfo

Result code Result code 2

Bit setting 2

Set state of output handshake Completion routine address 4

Return informational interrupt byte Setinformational interrupt parameters

Figure 5-5
Summary of extended serlal-port mode and hardware control commands

108 Chapter 5: Serial-Port Firmware

; | Chapter 6

1 Disk I
Support

109

This chapter describes the Apple IIGS Disk II support. Several different types of disk
drives can be attached to the Apple IIGS, some of which contain built-in intelligence.
This chapter describes the methods by which the Disk II product can be connected to
the Apple IIGS. The Apple IIGS disk-support system, with its built-in Integrated Woz
Machine (IWM) chip, accommodates Disk II (DuoDisk and UniDisk) 5.25-inch drives,
3.5-inch drives with built-in intelligence (UniDisk 3.5), and Apple 3.5 drives.

The TWM divides the Apple IIGS disk port (on the back of the computer) into I/O ports , 1
5 and 6. The ports are equivalent to internal versions of device drivers installed in : ;
expansion slots 5 and 6, respectively. The Control Panel setting for slot 5 or 6 ‘{ 5
determines whether the I/O port or a card physically present in that slot is active.

Port 6 provides the standard Disk II support. Disk II boot routines are built into ROM.
Disk 1II routines in DOS, ProDOS, and Pascal operate the same as they do in Apple 1I
computers prior to the Apple IIGS. Direct access to Disk II devices (reading and
writing tracks and sectors, seeking to specified tracks, and so on) is provided by
whichever operating system you boot. Separate firmware support is provided only for
booting from Disk II devices. (

Port 5 is called SmartPort. It consists of an expanded version of the SmartPort
firmware used in the 32K Apple II ROM. SmartPort is capable of supporting a]
combination of character and block devices up to a total of 127 devices. It controls the
UniDisk 3.5 and Apple 3.5 drives as well as the ROM disk and the RAM disk. The
SmartPort firmware is discussed in detail in Chapter 7, “SmartPort Firmware.”

You can attach up to two Disk II drives, two Apple 3.5 drives, and two or more]
UniDisk 3.5 drives to the Apple IIGS disk port, depending on IWM output
specifications. A maximum of six devices can be connected at any one time. The disks
must be attached in the order shown in Figure 6-1 (Apple 3.5 drives first, followed by
UniDisk 3.5 drives, followed by Disk II drives).]

]
Apple lIGS I I L : L !
Apple 3.5 Apple 3.5 UniDisk 3.5 DJSK'D”' k 5.25 and
drive drive drive (UniDisk S.

DuoDisk drives)

o

1/O port § I/O port 6

Figure 6-1
Order of disk drives on Apple lles disk ports

110 Chapter 6: Disk Il Support

Interface routines for ports 5 and 6 access the IWM using slot 6 soft switches. The
firmware arbitrates between slot use of the same soft switches. If a peripheral card is
plugged into slot 6, the firmware in port 5 can still access the disks connected to port 6
by temporarily disabling the external peripheral card, performing disk access, and
then reenabling the external peripheral card.

The port 6 disk interface firmware resides in the $C600 address space. It supports up to
two drives, addressed as though they are connected to slot 6, as physical drives 1 and
2. Both drives use single-sided, 143K-capacity, 35-track, 16-sector format. Table 6-1
summarizes the Disk II I/O port characteristics.

Table 6-1
Disk Il I/O port characteristics
Drive number Port 6, drive 1
Port 6, drive 2
Commands IN#6 or PR#6 from BASIC or Call -151 (to get

to Monitor from BASIC) and 6 Control-P

Initial characteristics All resets with valid reset vector, except Control-Reset,
pass control to slot 6 drive 1 if this drive is set (through
Control Panel) as boot device or if scan is selected and
no boot volume is found in higher-priority slot

Hardware location Internal, $COEO-$COEF, reserved for Disk II and
SmartPort use

Monitor firmware routines None

I/O firmware entry points $C600 (port 6 boot address)
$CO6SE (read first track, first sector and begin execution
of code found there)

Use of screen holes Port 6 main- and auxiliary-memory screen holes
reserved

Chapter 6: Disk Il Support 111

Startup

The Apple IIGS can be started by using either a cold start or a warm start. A cold start
clears the machine’s memory and tries to load an operating system from disk. A warm
start stops the program currently running and leaves the machine in Applesoft BASIC
with memory and programs intact.

A cold start can be initiated by any of the following:

O turning the machine on

O pressing G-Control-Reset

O issuing a reboot command from the Monitor, from BASIC, or from a program

O pressing Control-Reset if a valid reset vector does not exist

If you have set the startup device (from the Control Panel) to slot 6 or if you have
selected scan and no boot volume is found in a higher-priority slot, the cold-start
routine first sets a number of soft switches (see Appendix E, “Soft Switches”) and then
passes control to the program entry point at $C600. This code turns on the Disk II

unit 1 device motor and then recalibrates the head to track 0 and reads sector 0 from
that track. The sector contents are loaded into memory starting at address $0800; then
program control passes to $0801. The program loaded depends on the operating
system or application program on the disk.

To restart the system from BASIC, issue a PR#6 command; from the Monitor
command mode, issue 6 Control-P; and from a machine-language program, use JMP
§C600.

AVAVAVA VN

A warm start begins when you press Control-Reset if a valid reset vector exists.
Normally, a warm start leaves you in BASIC with memory unchanged. If a program has
changed the reset vector, the system will not perform a warm start. Usually, a program
either performs a cold start or beeps and does nothing, leaving you in the currently
executing program.

112 Chapter 6: Disk Il Support

Chapter 7

SmartPort
Firmware

113

The SmartPort firmware is associated with I/O port 5 (internal slot 5). It consists of Fi
assembly-language routines that support a series of block or character devices €
connected to the Apple IIGS external disk port. The SmartPort firmware converts calls in

to an appropriate format for transmittal over the disk port to control intelligent

devices, that is, devices that can interpret command streams, such as the UniDisk 3.5

drive. The SmartPort also provides an interface to several unintelligent devices, that 5¢
is, devices that require specific hardware control and employ no built-in intelligence,

through the use of device-specific drivers that are accessed through the SmartPort

extended interface calls. Unintelligent devices supported on the Apple IIGS through

the SmartPort include the Apple 3.5 drive, RAM disk, and ROM disk.

To use the SmartPort interface, a program issues calls similar to ProDOS 8 machine-
language interface calls. Each call consists of a JSR to the SmartPort entry point,
followed by a SmartPort command byte, followed by a pointer to a table containing
the parameters necessary for the call. The calls to SmartPort take two possible forms.

The standard version of a call allows your program to move data to and from bank $00 glr
of the memory. You use the extended version of the call to move data to and from
other banks of memory.
= L
Locating SmartPort O
tc
You can determine whether the SmartPort interface is installed in a system by 2
examining the ProDOS block-device signature bytes shown here: W
$Cn01 = $20 d
$Cn03 = $00 F
$Cn0S = $03 P
Vv
You must also verify the existence of the SmartPort signature byte:
$Cn07 = $00
C
In the preceding addresses, n is the slot number for which the signature bytes are being S

examined. All peripheral cards or ports with these signature-byte values support both
ProDOS block-device calls and SmartPort calls. You can examine the SmartPort ID
type byte to obtain more information about any special support that may be built into
the SmartPort driver. The SmartPort ID type byte located at $CnFB has been encoded
to indicate the types of devices that can be supported by the SmartPort driver. This
byte pertains to the interface only. For example, the Apple IIGS SmartPort interface in
internal slot 5 may support a RAM disk, but it is not a RAM card, so bit 0 is cleared.

114 Chapter 7: SmartPort Firmware

, Figure 7-1 illustrates the contents of this ID type byte. Note that a driver that supports
| extended SmartPort calls must also support standard SmartPort calls. Bit 1, SCSI,
indicates support for the Small Computer System Interface (SCSI).

SmartPort ID type

|

SCnFB| 7 | 6| 5143]2|1]0 %
|

RAM card z

scsl |

Reserved

Extended é

Figure 7-1

SmartPort ID type byte

Locating the dispatch address

Once you have determined that a SmartPort interface exists in a slot or port, you need
to determine the entry point, or dispatch address, for the SmartPort. This address is
determined by the value found at $CnFF, where n is the slot number. By adding the
value at $CnFF to the address $Cn00, you can calculate the standard ProDOS block-
device driver entry point. More information about this entry point is available in the
ProDOS Technical Reference. The SmartPort entry point is located 3 bytes after the
ProDOS entry point. Therefore, the SmartPort entry point is $Cn00 plus 3 plus the
value found at $CnFF.

For example, if the signature bytes for the SmartPort interface are in slot 5 and $CSFF
contains a hexadecimal value of $0A, the ProDOS entry point is $C50A, and the
SmartPort entry point is $C50A plus 3, or $CS0D.

Locating the dispatch address 115

SmartPort call parameters

SmartPort calls include several parameters. Not all parameters appear in every
SmartPort call. The parameter types that may be required when making a SmartPort

call are as follows:
Command name

Command number

Parameter list pointer

Parameter count

Unit number

Buffer address

Block number

Byte count

Address pointer

Name used to identify the SmartPort call

Byte value that you position contiguous in memory with the
JSR to the SmartPort entry point; hexadecimal number that
specifies the type of SmartPort call (bit 6 is cleared to 0 for
standard calls and set to 1 for extended calls)

Pointer that you position contiguous in memory with the
command number that points to the parameter list

The first item in the parameter list; hexadecimal byte value
that specifies the number of parameters in the parameter
list

Hexadecimal byte value that specifies the unit number of
the device to or from which the SmartPort call is to direct
1/0

Pointer to memory that will be used in the I/O transaction
(for standard SmartPort calls, this is a word-wide pointer
referencing memory in bank zero; for extended calls, the
pointer is a longword referencing memory in any bank)

Number specifying the block address used in an I/O
transaction with a block device (for standard SmartPort
calls, this parameter is 24 bits wide; for extended calls, this
parameter is 32 bits wide)

Specifies the number of bytes to be transferred between
memory and the device (this parameter is 16 bits wide)

Specifies an address within the device

116 Chapter 7: SmartPort Firmware

SmartPort assignment of unit numbers

The unit number is included in every parameter list. The unit number specifies which
device connected to the slot 5 hardware responds to the commands you issue. Calls
that allow you to reference the SmartPort itself use a unit number of zero. Only Status,
Init, and Control calls may be made to unit zero. The Apple IIGS assigns unit numbers
to devices in ascending order starting with unit number $01. Devices are assigned unit
numbers starting with the RAM disk, ROM disk, and Apple 3.5 drive, and finally
proceeding to intelligent devices such as the UniDisk 3.5.

Allocation of device unit numbers

The Apple IIGS implementation of the SmartPort interacts with the Control Panel
selection of boot devices. For any given port, a boot can occur only from the first
device logically connected to that port. Booting from Disk II devices is handled by the
slot 6 firmware. SmartPort support is provided to allow booting from any of three

types of devices:

0 RAM disk
0 ROM disk
0 Disk drive (Apple 3.5 drive or UniDisk 3.5)

Depending on the devices that are connected to the slot 5 hardware, the selected boot
device may not be the first logical device in the chain. To boot from the selected
device, using the Control Panel settings, the SmartPort firmware logically moves the
selected device to the first unit in the device chain. All devices that were previously
ahead of the selected boot device must then be moved logically so that they are now
located behind the selected boot device.

The initialization call handles assignments of unit numbers in a two-stage process. In
the first stage, unit numbers are assigned as described above, in the section

“SmartPort Assignment of Unit Numbers.” In the second stage, the units are

remapped so that the selected boot device is always the first logical device in the

chain. If Scan is selected as the boot option in the Control Panel, the SmartPort places
the first physical disk drive as the first logical device in the device chain. i

Device remapping is necessary for certain device configurations under ProDOS.
Current implementations of ProDOS (both ProDOS 8 and ProDOS 16) support only
two devices per port or slot. If more than two devices are connected to the device
chain, devices beyond the second cannot be accessed. ProDOS 8 and ProDOS 16 get
around this restriction by logically mapping devices beyond the second device so that
they appear to be connected to slot 2. Using this method, ProDOS 8 and ProDOS 16
can support up to four devices on the chain.

% Note: Future versions of ProDOS 16 will support more than two devices per port or
slot so that no remapping of units to slot 2 will be necessary.

SmartPort assignment of unit numbers 117

Figures 7-2 through 7-6 show device remapping derived from the selected boot device
versus the device configuration. Only a few of the possible remapping variations are

Apple 3.5 drive
Stage 1, unit 3

Apple 3.5 drive

Stage 2, unit 3

shown.
RAM disk Apple 3.5 drive
Stage 1, unit 1 Stage 1, unit 2
SmartPort S o i >
If disk Is boot Apple 3.5 drive RAM disk
device, then: Stage 2, unit 1 Stage 2, unit 2
SmartPort R RS S S o
Figure 7-2
Device mapping: configuration 1, derivation 1
RAM disk Apple 3.5 drive
Stage 1, unit 1 Stage 1, unit 2
smartPort |ag—pp| = le—p = le—p
If RAM disk Is boot RAM disk Apple 3.5 drive
device, then: Stage 2, unit 1 Stage 2, unit 2
smartPort . T T
Figure 7-3

Device mapping: configuration 1, derivation 2

118

Chapter 7: SmartPort Firmware

Apple 3.5 drive
Stage 1, unit 3

Apple 3.5 drive

Stage 2, unit 3

RAM disk ROM disk UniDisk 3.5 drive
Stage 1, unit 1 Stage 1, unit 2 Stage 1. unit 3
SmartPort A et i ol
If RAM disk is boot RAM disk ROM disk UniDisk 3.5 drive
device, then: Stage 2, unit 1 Stage 2, unit 2 Stage 2, unit 3
SmartPort el R e T
Figure 7-4
Device mapping: configuration 2, derivation 1
RAM disk ROM disk UniDisk 3.5 drive
Stage 1, unit 1 Stage 1. unit 2 Stage 1, unit 3
smartPort |g—pp| T le—p| T le—p -
If ROM disk Is boot ROM disk RAM disk UniDisk 3.5 drive
device, then: Stage 2, unit 1 Stage 2, unit 2 Stage 2, unit 3
SmartPort g T || BT -
Figure 7-5
Device mapping: configuration 2, derivation 2
RAM disk ROM disk UniDisk 3.5 drive
Stage 1, unit 1 Stage 1, unit 2 Stage 1, unit 3
SmartPort |g—pp| T |le—p T le—p| o
If disk is boot UniDisk 3.5 drive RAM disk ROM disk
device, then: Stage 2, unit 1 Stage 2, unit 2 Stage 2, unit 3
SmartPort R e T | e -
Figure 7-6

Device mapping: configuration 2, derivation 3

SmartPort assignment of unit numbers 119

Issuing a call to SmartPort

SmartPort calls fall into two categories: standard calls and extended calls. Standard
SmartPort calls are designed for interfacing Apple II peripherals. Extended SmartPort
calls are designed for peripheral devices that can take advantage of the 65816
processor’s ability to transfer data between any memory bank and the peripheral
device and may require larger block addressing than is possible with the standard
SmartPort calls.

For standard SmartPort calls, the pointer following the SmartPort command byte is a
word-wide pointer to a parameter list in bank zero. For extended SmartPort calls, the
pointer is a longword pointer to a parameter list in any memory bank.

There are several constraints on the use of the SmartPort:

O The stack use is 30-35 bytes. Programs should allow 35 bytes of stack space for each
call.

O The SmartPort cannot generally be used to put anything into absolute zero page
locations. Absolute zero page is defined as the direct page when the direct register is
set to $0000.

0O The SmartPort can be called only from Apple II emulation mode. This means that
the emulation flag in the 65C816 processor status byte must be set to 1, and the
direct-page register and data bank register must both be set to zero. Native-mode
programs wishing to call the SmartPort must switch to emulation mode prior to
making a SmartPort call. Such programs may cause corruption of the contents of
the stack pointer. Refer to Chapter 2, “Notes for Programmers,” for more
information about switching processor modes.

This is an example of a standard SmartPort call:

SP_CALL JSR DISPATCH ;Call SmartPort command dispatcher
DFB CMDNUM ;This specifies the command type
DW CMDLIST ;Word pointer to the parameter list in bank $00
BCS ERROR ;Carry is set on an error

This is an example of a extended SmartPort call:

SP_EXT_CALL JSR DISPATCH ;Call SmartPort command dispatcher
DFB CMDNUM+540 ;This specifies the extended command type
DW CMDLIST ; Low-word pointer to the parameter list
DW ~ CMDLIST ;High-word pointer to the parameter list
BCS ERROR ;Carry is set on an error

On completion of a eall, execution returns to the RTS address plus 3 for 2 standard call
and to the RTS address plus 5 for an extended call (the BCS statement in the

examples). If the call was successful, the C flag is cleared and the A register is set to 0; if
it was unsuccessful, the C flag is set and the A register contains the error code. If data is

transferred from the device to the CPU, the X register contains the low byte count and

the Y register contains the high byte count.

120 Chapter 7: SmartPort Firmware

The complete register status upon completion is summarized in Table 7-1.

Table 7-1
Register status on return from SmartPort

65816 status byte

\" I B D 1 z C Acc X Y PC SP
Successful X X 1 X 0 U X 0 0 n n JSR+3 U
standard call
Successful X X 1 X 0 U X 0 o n n JSR+5 U

extended call

Unsuccessful X X 1 X 0 U X 1 Error X X JSR+3 U
standard call

Unsuccessful X X 1 X 0 U X 1 Error X X JSR+5 U
extended call

* Note: X = undefined, U = unchanged, n = undefined for transfers to the device or number
of bytes transferred when the transfer was from the device to the host.

Generic SmarPort calls

Generic SmartPort calls are explained in detail in the following sections.

Status

The Status call returns status information about a particular device or about the
SmartPort itself. Only Status calls that return general information are listed here.
Device-specific Status calls can also be implemented by a device for diagnostic or
other information. Device-specific calls must be implemented with a status code of
$04 or greater. On return from a Status call, the X and Y registers contain a count of
the number of bytes transferred to the host. X contains the low byte of the count, and
Y contains the high byte of the count.

Standard call Extended call
CMDNUM $00 $40
CMDLIST Parameter count Parameter count
Unit number Unit number

Status list pointer (low byte) Status list pointer (low byte, low word)

Status list pointer (high byte) Status list pointer (high byte, low word)

Status code Status list pointer (low byte, high word)
Status list pointer Chigh byte, high word)

Status code
Generic SmartPort calls 121

Required parameters
Parameter count Byte value = $03
Unit number 1-byte value in the range $00, $01 to $7E

Each device has a unique number assigned to it at initialization time. The numbers are
assigned according to the device’s position in the chain. A Status call with a unit
number of $00 specifies a call for the overall SmartPort status.

Standard call Extended call
Status list pointer Word pointer (bank $00) Longword pointer

This is a pointer to the buffer to which the status list is to be returned. For standard
calls, this is a word-wide pointer defaulting to bank $00. For extended calls, this is a
longword pointer. Note that the length of the buffer varies, depending on the status
request being made.

Status code 1-byte value in the range $00 to $FF

This is the number of the status request being made. All devices respond to the
following requests:

Status

code Status returned

$00 Return device status

$01 Return device control block

$02 Return newline status (character devices only)
$03 Return device information block (DIB)

Although devices must respond to the preceding status requests, a device may not be
able to support the request. In this case, the device returns an invalid status code error

($2D).

Statcode = $00: The device status consists of 4 bytes. The first is the general status
byte:

Bit Function

7 1 = Block device; 0 = Character device

6 1 = Write allowed

5 1 = Read allowed

4 1 = Device online or disk in drive

3 1 = Format allowed

2 1 = Media write protected (block devices only)

1 1 = Device currently interrupting (supported by Apple IIc only)
0 1 = Device currently open (character devices only)

122 Chapter 7. SmartPort Firmware

If the device is a block device, the next field indicates the number of blocks in the

. device. This is a 3-byte field for standard calls or a 4-byte field for extended calls. The
. least significant byte is first. If the device is a character device, these bytes are set to

. zer0.

. Statcode = $01: The device control block (DCB) is device dependent. The DCB is

- typically used to control various operating characteristics of a device. The DCB is set

- with the corresponding Control call. The first byte is the number of bytes in the

. control block. A value of $00 returned in this byte indicates a DCB length of 256, and a
-~ value of $01 indicates a DCB length of 1 byte. The length of the DCB is always in the

- range of 1 to 256 bytes, excluding the count byte.

' Statcode = $02: No character devices are currently implemented for use on the
- SmartPort, so the newline status is presently undefined.

. Statcode = $03: This call returns the device information block (DIB). It contains
- information identifying the device and its type and various other attributes. The
. returned status list has the following form:

i STATLIST Standard call
Device status byte

Extended call

Device status byte

Block size (low byte)
Block size (mid byte)
Block size (high byte)

Block size (low byte, low word)
Block size (high byte, low word)
Block size (low byte, high word)

ID string length Block size (high byte, high word)
ID string (16 bytes) ID string length

Device type byte ID string (16 bytes)

Device subtype byte Device type byte

Version word Device subtype byte

Version word

The device status is a 1-byte field that is the same as the general status byte returned in i
-~ the device Status call (statcode = $00). The block size field is the same as the block size i
 field returned in the device Status call. The ID string consists of 1-byte prefix
. indicating the number of ASCII characters in the ID string. This is followed by a
-~ 16-byte field containing an ASCII string identifying the device. The most significant bit
- of each ASCII character is set to zero.

unused portion of the string buffer. The device type and device subtype fields are
- l-byte fields. Several bits encoded within the DIB subtype byte are defined to indicate
whether a device supports the extended SmartPort interface, disk-switched errors, or
- removable media. L

1‘
If the ASCII string consists of fewer than 16 characters, ASCII spaces are used to fill the , l
1
1

Generic SmartPort calls 123 i

A breakdown of the DIB subtype byte is shown in Figure 7-7.

Subtype

716|514 |3l2]11]0

Reserved

0 = Removable media

1 = Supports disk-switched errors

= Supports extended SmartPort

Figure 7-7
SmartPort device subtype byte

Applications requiring specific knowledge about a device should execute a DIB status
and examine the type byte. The subtype byte is used to obtain information about
special features a device may support. Several device types and subtypes are assigned
to existing SmartPort devices. These types and subtypes are as follows:

Type Subtype Device

$00 $00 Apple II memory expansion card

$00 $CO Apple IIGS Memory Expansion Card configured as a RAM disk
$01 $00 UniDisk 3.5

$01 $CO Apple 3.5 drive

$03 $EO0 Apple II SCSI with nonremovable media

Undefined SmartPort devices may implement the following types and subtypes:

Type Subtype Device

$02 $20 Hard disk

$02 $00 Removable hard disk

$02 $40 Removable hard disk supporting disk-switched errors

$02 $A0 Hard disk supporting extended calls

$02 $CO Removable hard disk supporting extended calls and disk-
switched errors

$02 $A0 Hard disk supporting extended calls

$03 $Co SCSI with removable media

The firmware version field is a 2-byte field consisting of a number indicating the
firmware version.

124 Chapter 7: SmartPort Firmware

smartPort driver status

A Status call with a unit number of $00 and a status code of $00 is a request to return the |
atus of the SmartPort driver. This function returns the number of devices as well as i
e current interrupt status. The format of the status list returned is as follows:

STATLIST Byte O Number of devices i
' Byte 1 Reserved
Byte 2 Reserved
Byte 3 Reserved 1
Byte 4 Reserved 1
Byte 5 Reserved [
Byte 6 Reserved
Byte 7 Reserved

|
The number of devices field is a 1-byte field indicating the total number of devices : j
connected to the slot or port. This number will always be in the range 0 to 127. ‘

Possible errors
‘The following error return values are possible.

$06 BUSERR Communications error
$21 BADCTL Invalid status code i
$30-$3F $50-$7F Device-specific error

Generic SmartPort calls 125

ReadBlock

This call reads one 512-byte block from the block device specified by the unit number
passed in the parameter list. The block is read into memory starting at the address
specified by the data buffer pointer passed in the parameter list.

Standard call

CMDNUM $01

CMDLIST Parameter count
Unit number
Data buffer pointer (low byte)
Data buffer pointer (high byte)
Block number (low byte)
Block number (middle byte)
Block number (high byte)

Required parameters
Parameter count Byte value = $03

Unit number

Standard call

Extended call

$41

Parameter count

Unit number

Data buffer pointer (low byte, low word)
Data buffer pointer (high byte, low word)
Data buffer pointer (low byte, high word)
Data buffer pointer Chigh byte, high word)
Block number (low byte, low word)

Block number (high byte, low word)
Block number (low byte, high word)
Block number (high byte, high word)

1-byte value in the range $01 to $7E

Extended call

Data buffer pointer Word pointer (bank $00) Longword pointer

The data buffer pointer points to a buffer into which the data is to be read. For
standard calls, this is a word pointer into bank $00. For extended calls, the pointer is a
longword specifying a buffer in any memory bank. The buffer must be 512 bytes long.

Standard call

Block number 3-byte number

Extended call

4-byte number

The block number is the logical address of a block of data to be read. There is no
general connection between block numbers and the layout of tracks and sectors on the
disk. Translation from logical to physical blocks is performed by the device.

Possible errors

The following error return values are possible.

$06 BUSERR
$27 IOERROR I/O error
$28 NODRIVE

Communications error

No device connected

$2D BADBLOCK Invalid block number

$2F OFFLINE

126 Chapter 7: SmartPort Firmware

Device off line or no disk in drive

= 4

ad

Cl

A - Mm

A LA A LA LY = "

WriteBlock

The Write call writes one 512-byte block to the block device specified by the unit
number passed in the parameter list. The block is written from memory starting at the
address specified by the data buffer pointer passed in the parameter list.

Standard call Extended call
CMDNUM $02 $42
CMDLIST Parameter count Parameter count
Unit number Unit number

Data buffer pointer (low byte) Data buffer pointer (low byte, low word)
Data buffer pointer (high byte) Data buffer pointer high byte, low word)

Block number (low byte) Data buffer pointer (low byte, high word)
Block number (middle byte) Data buffer pointer Chigh byte, high word)
Block number (high byte) Block number (low byte, low word)

Block number Chigh byte, low word)
Block number (low byte, high word)
Block number (high byte, high word)

Required parameters
Parameter count Byte value = $03
Unit number 1-byte value in the range $01 to $7E
Standard call Extended call
Data buffer pointer Word pointer (bank $00) Longword pointer

The data buffer pointer points to a buffer that the data is to be written from. For
standard calls, this is 2 word pointer into bank $00. For extended calls, the pointer is a
longword specifying a buffer in any memory bank. The buffer must be 512 bytes long.

Standard call Extended call

Block number 3-byte number 4-byte number

The block number is the logical address of a block of data to be written. There is no
general connection between block numbers and the layout of tracks and sectors on the
disk. The translation from logical to physical block is performed by the device.

Possible errors

The following error return values are possible.

$06 BUSERR Communications error

$27 IOERROR I/O error

$28 NODRIVE No device connected

$2B NOWRITE Disk write protected

$2D BADBLOCK Invalid block number

$2F OFFLINE Device off line or no disk in drive

Generic SmartPort calls 127

Format

The Format call formats a block device. Note that the formatting performed by this
call is not linked to any operating system; it simply prepares all blocks on the medium
for reading and writing. Operating-system-specific catalog information, such as bit
maps and catalogs, are not prepared by this call.

Standard call Extended call
CMDNUM $03 $43
CMDLIST Parameter count Parameter count
Unit number Unit number

Format call implementation

Some block devices may require device-specific information at format time. This
device-specific information may include a spare list of bad blocks to be written
following physical formatting of the media. In this case, it may not be desirable to
implement the Format call so that a physical format is actually performed because a
spare list of bad blocks may not be available from the vendor or because of the time
involved in executing a bad-block scan. It may be more desirable to implement
device-specific Control calls to lay down the physical tracks and initialize the spare
lists. If this latter procedure is followed, the Format call need only return to the
application with the accumulator set to $00 and the carry flag cleared. This procedure
should be used only when it is not desirable for the application to physically format
the media.

Required parameters
Parameter count Byte value = $01

Unit number Byte value in the range $01 to $7F

Possible errors
The following error return values are possible.

$06 BUSERR Communications error

$27 IOERROR I/O error

$28 NODRIVE No device connected

$2B. NOWRITE Disk write protected

$2F OFFLINE Device off line or no disk in drive

128 Chapter 7: SmartPort Firmware

Control

The Control call sends control information to the device. The information may be
either general or device specific.

Standard call Extended call
CMDNUM $04 $44
CMDLIST Parameter count Parameter count
Unit number Unit number

Control list pointer (low byte) Control list pointer (low byte, low word)

Control list pointer (high byte) Control list pointer (high byte, low word)

Control code Control list pointer (low byte, high word)
Control list pointer (high byte, high word)
Control code

Required parameters
Parameter count Byte value = $03
Unit number Byte value in the range $00 to $7E
Standard call Extended call
Control list pointer Word pointer (bank $00) Longword pointer

The control list is a pointer to the user’s buffer from which the control information is
to be read. For the standard Control call, the pointer is a word value into bank $00.
For the extended Control call, the pointer is a longword value that may reference any
memory bank. The first two bytes of the control list specify the length of the control
list, with the low byte first. A control list is mandatory, even if the call being issued
does not pass information in the list. In this latter case, length of zero is used for the
first two bytes.

Control code Byte value
Byte value in the range $00 to $FF

The control code is the number of the control request being made. This number and
the function indicated are device specific, except that all devices must reserve the
following codes for specific functions:

Code Control function

$00 Resets the device

$01 Sets device control block

$02 Sets newline status (character devices only)
$03 Services device interrupt

Code = $00: This call performs a soft reset of the device. It generally returns
housekeeping values to some reset value.

Generic SmartPort calls 129

Code = $01: This Control call sets the device control block. Devices generally use the
bytes in this block to control global aspects of the device’s operating environment.
Because the length is device dependent, the recommended way to set the DCB is to
read in the DCB (with the Status call), alter the bits of interest, and then write the same
string with this call. The first byte is the length of the DCB, excluding the byte itself. A
value of $00 in the length byte corresponds to a DCB size of 256 bytes, and a count
value of $01 corresponds to a DCB size of 1 byte. A count value of $FF corresponds to
a DCB size of 255 bytes.

Possible errors

The following error return values are possible.

$06 BUSERR Communications error

$21 BADCTL Invalid control code

$22 BADCTLPARM Invalid parameter list

$30-$3F UNDEFINED Device-specific error

Init

The Init call provides the application with a way of resetting the SmartPort.
Standard call Extended call

CMDNUM $05 $45

CMDLIST Parameter count Parameter count
Unit number Unit number

Required parameters
Parameter count Byte value = $01
Unit number Byte value = $00

The SmartPort will perform initialization, hard resetting all devices and sending each
their device numbers. This call may not be made to a specific unit; rather, it must be
made to the SmartPort as a whole. This call may not be executed by an application.
Issuing this call in conjunction with Control Panel changes may relocate devices
contrary to the ProDOS device list. Applications wishing to reset a specific device
should use the Control call with a control code of $00.

Possible errors

The following error return values are possible.
$06 BUSERR Communications error
$28 NODRIVE No device connected

130 Chapter 7: SmartPort Firmware

Open
The Open call prepares a character device for reading or writing.

Note that a block device will not accept this call, but will return an invalid command
error ($01).

Standard call Extended call
CMDNUM $05 $45
CMDLIST Parameter count Parameter count
Unit number Unit number

Required parameters
Parameter count Byte value = $01
Unit number Byte value in the range $01 to $7E

Possible errors
The following error return values are possible.

$01 BADCMD Invalid command
$06 BUSERR Communications error
$28 NODRIVE No device connected

Close

The Close call tells an extended character device that a sequence of read or write
operations has ended. For a printer, this call could have the effect of flushing the print
buffer.

Note that a block device will not accept this call, but will return an invalid command
error ($01).

Standard call Extended call
CMDNUM $07 $47
CMDLIST Parameter count Parameter count
Unit number Unit number

Generic SmartPort calls 131

I

Required parameters
Parameter count Byte value = $01

Unit number

Possible errors

Byte value in the range $01 to $7E

The following error return values are possible.

$01 BADCMD Invalid command

$06 BUSERR Communications error
$28 NODRIVE No device connected
Read

The Read call reads the number of bytes specified by the byte count into memory. The
starting address of memory that the data is read into is specified by the data buffer
pointer. The address pointer references an address within the device that the bytes are
to be read from. The meaning of the address parameter depends on the device
involved. Although this call is generally intended for use by character devices, a block
device might use this call to read a block of nonstandard size (a block larger than 512
bytes). In this latter case, the address pointer is interpreted as a block address.

Standard call

$08

Parameter count

Unit number

Data buffer pointer (low byte)
Data buffer pointer Chigh byte)
Byte count (low byte)

Byte count Chigh byte)
Address pointer (low byte)
Address pointer (mid byte)
Address pointer (high byte)

CMDNUM
CMDLIST

132 Chapter 7. SmartPort Firmware

Extended call

348

Parameter count

Unit number

Data buffer pointer (low byte, low word)
Data buffer pointer Chigh byte, low word)
Data buffer pointer (low byte, high word)
Data buffer pointer (high byte, high word)
Byte count (low byte)

Byte count ¢high byte)

Address pointer (low byte, low word)
Address pointer (high byte, low word)
Address pointer (low byte, high word)
Address pointer (high byte, high word)

Required parameters
Parameter count Byte value = $04
Unit number 1-byte value in the range $01 to $7E
Standard call Extended call
Data buffer pointer Word pointer (bank $00) Longword pointer

For standard calls, this is the 2-byte pointer to a buffer into which the data is to be
read. For extended calls, the pointer is a longword specifying a buffer in any memory
bank. The buffer must be large enough to accommodate the number of bytes
requested.

Byte count 2-byte number

The byte count specifies the number of bytes to be transferred. All of the current
implementations of the SmartPort utilizing the SmartPort Bus have a limitation of 767
bytes. Other peripheral cards supporting the SmartPort interface may not have this
limitation.

Standard call Extended call
Address pointer 3-byte address 4-byte address

The address is a device-specific parameter usually specifying a source address within
the device. This call might be implemented with an extended block device using the
address as a block address for accessing a nonstandard block. For example, such an
implementation allows the Apple 3.5 drive and UniDisk 3.5 drive to read 524-byte
Macintosh blocks from 3.5-inch media.

Possible errors

The following error return values are possible.

$06 BUSERR Communications error

$27 IOERROR 1/O error

$28 NODRIVE No device connected

$2B NOWRITE Disk write protected

$2D BADBLOCK Invalid block number

$2F OFFLINE Device off line or no disk in drive

Generic SmartPort calls 133

|

Wirite

The Write call writes the number of bytes specified by the byte count to the device
specified by the unit number. The starting memory address that the data is read from
is specified by the data buffer pointer. The address pointer references an address
within the device where the bytes are to be written. The meaning of the address
parameter depends on the device involved. Although this call is generally intended
for use by character devices, a block device might use this call to write a block of a
nonstandard size (a block larger than 512 bytes). In this latter case, the address field is
interpreted as a block address.

Standard call Extended call
CMDNUM $09 $49
CMDLIST Parameter count Parameter count
Unit number Unit number

Data buffer pointer (low byte) Data buffer pointer (low byte, low word)

Data buffer pointer (high byte) Data buffer pointer ¢high byte, low word)

Byte count (low byte) Data buffer pointer (low byte, high word)

Byte count high byte) Data buffer pointer Chigh byte, high word)

Address pointer (low byte) Byte count (low byte)

Address pointer (mid byte) Byte count (high byte)

Address pointer (high byte) Address pointer (low byte, low word)
Address pointer high byte, low word)
Address pointer (low byte, high word)
Address pointer (high byte, high word)

Required parameters
Parameter count Byte value = $04

Unit number 1-byte value in the range $01 to $7E

134 Chapter 7: SmartPort Firmware

3 Standard call Extended call ‘
Data buffer pointer Word pointer (bank $00) Longword pointer !

For standard calls, this is the 2-byte pointer to a buffer into which the data is to be ;
~ read. For extended calls, the pointer is a longword specifying a buffer in any memory i
~ bank. The buffer must be large enough to accommodate the number of bytes f

- requested.

] Byte count 2-byte number

~ The byte count specifies the number of bytes to be transferred. All of the current
~implementations of the SmartPort utilizing the SmartPort Bus have a limitation of 767
~ bytes. Other peripheral cards supporting the SmartPort interface may not have this
~limitation.

; Standard call Extended call

~ Address pointer 3-byte value 4-byte value

- The address is a device-specific parameter usually specifying a destination address ,
within the device. This call might be implemented with a block device, using the

address as a block address for accessing a nonstandard block. For example, such an

~ implementation allows the Apple 3.5 drive and UniDisk 3.5 drive to write 524-byte

~ Macintosh blocks to 3.5-inch media.

Possible errors
The following error return values are possible.

$06 BUSERR Communications error
~ $27 IOERROR 1/O error
~ §28 NODRIVE No device connected
$2B NOWRITE Disk write protected
- $2D BADBLOCK Invalid block number
$2F OFFLINE Device off line or no disk in drive

Generic SmartPort calls 135

Tables 7-2 and 7-3 summarize the command numbers and parameter lists for standard 1
and extended SmartPort calls. £
¢
Table 7-2)
Summary of standard commands and parameter lists (
Command Status ReadBlock WriteBlock Format Control Init Open Close Read Write (
|
CMDNUM $00 $01 $02 $03 $04 $05 $06 $07 $08 $09
CMDLIST
byte
0 $03 $03 $03 $01 $03 $01 $01 $01 $04 $04
1 Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit
number number number number number number number number number number
2 Status Data Data Control Data Data
list buffer buffer list buffer buffer
pointer pointer pointer pointer pointer pointer
3 Status Data Data Control Data Data
list buffer buffer list buffer buffer
pointer pointer pointer pointer pointer pointer
4 Status Block Block Control Byte Byte
code number number code count count
5 Block Block Byte Byte
number number count count
6 Block Block * *
number number
7 - -
8 - .

* This parameter is device specific.

< Note: The Read byte count and the Control call list contents in some SmartPort implementations
may not be larger than 767 bytes.

Upon return from the Read call, the byte count bytes will contain the number of bytes actually read
from the device.

136 Chapter 7: SmartPort Firmware

Table 7-3
Summary of extended commands and parameter lists

Command Status ReadBlock WriteBlock Format Control Init Open Close Read Write
CMDNUM $40 $41 $42 $43 $44 $45 $46 $47 $48 $49
CMDLIST
byte
0 $03 $03 $03 $01 $03 $01 $01 $01 $04 $04
1 Unit Unit Unit Unit Unit Unit Unit Unit Unit Unit
number number number number number number number number number number
2 Status Data Data Control Data Data
list buffer buffer list buffer buffer
pointer pointer pointer pointer pointer pointer
3 Status Data Data Control Data Data
list buffer buffer list buffer buffer
pointer pointer pointer pointer pointer pointer
4 Status Data Data Control Data Data
list buffer buffer list buffer buffer
pointer pointer pointer pointer pointer pointer
5 Status Data Data Control Data Data
list buffer buffer list buffer buffer
pointer pointer pointer pointer pointer pointer
6 Status Block Block Control Byte Byte
code number number code count count
7 Block Block Byte Byte
number number count count
8 Block Block ‘ *
number number
9 Block Block * *
number number
10 - -
11 . .
* This parameter is device specific.
Note: The Read byte count and the Control call list contents in some SmartPort implementations
may not be larger than 767 bytes.
Upon return from the Read call, the byte count bytes will contain the number of bytes actually read
from the device.

Generic SmartPort calls 137

Device-specific SmartPort calls

In addition to the common command set of SmartPort calls already listed, a device
may implement its own device-specific calls. Usually, these calls are implemented as a
subset of the SmartPort Status or Control call rather than as new commands.

SmartPort calls specific to Apple 3.5 disk drive

Seven Apple 3.5 drive device-specific calls are provided as extensions to the Control
call. These device-specific control calls may be used only with the Apple 3.5 drive. To
determine whether a device is an Apple 3.5 drive, examine the type and subtype bytes
returned from a DIB status call. If the type byte is returned with a value of $01 and the
subtype byte is returned with a value of $C0, then the device is an Apple 3.5 drive.
Because device-specific calls to the Apple 3.5 drive are implemented as Control calls,
only the control code and control list for these calls are defined here. Refer to the
SmartPort Control call section earlier in this chapter for information about the
command byte and parameter list.

The following information about Eject and SetHook should be treated as an extension
to the extended SmartPort Control call.

Eject
Eject ejects the media from a 3.5-inch drive.
Control code Control list

$04 Count low byte $00
Count high byte $00

SetHook

SetHook redirects routines internal to the Apple 3.5 drive. The routine to be
redirected is referenced by the hook reference number. The address that the routine is
to be redirected to is specified by the 3-byte address field in the control list.

Control code Control list

$05 Count low byte $04
Count high byte $00
Hook reference number $xx
Address low $xx
Address high $xx
Address bank $xx

138 Chapter 7: SmartPort Firmware

= - =t Y e |

Valid hook reference numbers and their associated routines are as follows:

Hook

reference Routine

$01 Read Address Field
$02 Read Data Field
$03 Write Data Field
$04 Seek

$05 Format Disk

$06 Write Track

$07 Verify Track

Read Address Field

The Read Address Field routine reads bytes from the disk until it finds the address
marks and a sector number specified as input parameters for the routine. The Read
Data Field routine reads a 524-byte Macintosh block or 512-byte Apple II block from
the disk.

Write Data Field

The Write Data Field routine writes a 524-byte block of data to the disk. For Apple 11
blocks, the first 12 bytes will be written as zero.

Seek

The Seek routine positions the read and write head over the appropriate cylinder on
the disk.

Format

The Format routine writes address marks, data marks, zeroed data blocks, checksum,
and end-of-block marks.

Write Track

The Write Track routine is called by the formatter to write one track of empty blocks.
The number of blocks written depends on the track that the read and write head is
positioned over.

SmartPort calls specific to Apple 3.5 disk drive 139

R

Figure 7-8 demonstrates the physical layout of the format that this command writes. : Th
Val
Address Data EOB $F]
marks Address field Gap marks Data field marks $A
$A
£ £ $D
x|5]e S| 3 a 5 7 $F
D5|AAI96| B |G |S|E|S |22 5-10 bytes sync |D5|AA|AD| G| 342 data bytes | % |DE|AA| FF '
=loflslofle|e|¥ @ Q $F
w w | c w ~
O 0 $F
$C
Figure 7-8 $3
Disk-sector format $F
$F
Verify R
The Verify routine is called by the formatter to verify that the data written by the Write ‘t Re
Track routine was written correctly. fie
de
Ce
ResetHook $(
ResetHook restores the default address for the hook specified in the control list.
Control code Control list
$06 Count low byte $01 S
Count high byte $00 ‘
Hook reference number | S
St
n
‘ S
SetMark
SetMark changes individual bytes in the mark tables. The count field specifies the $
number of bytes in the mark table to be written plus 1. The start byte references an
offset into the mark table to which the new bytes are 1o be written. Bounds checking is
performed to make sure the byte count does not overflow the internal mark table.
Control code Control list 'S
$07 Count low byte $xx
Count high byte $00 S
Start byte $xx ;
Data
§

140 Chapter 7: SmartPort Firmware

The default values for the Mark table are as follows:

Value Byte number Value Byte number

$FF 0 sector number $AA 11

$AD 1 data marks $DE 12

SAA 1 $FF 13

$D5 3 $FF 14 interheader gap
$FF 4 $FF 15

$FC 5 sync bytes $FF 16

$F3 6 $FF 17

$CF 7 $96 18 address marks
$3F 8 $AA 19

$FF 9 $DS 20

$FF 10 bit-slip marks $FF 21

ResetMark

ResetMark restores individual bytes in the mark tables to the default values. The count
field defines the number of bytes in the mark table to be restored plus 1. The start field
defines where in the mark table the bytes are to be restored.

Control code Control list

$08 Count low byte $xx
Count high byte $00
Start byte $xx
SefSides

SetSides sets the number of sides of the media to be formatted by the Format call. It
i supports both single-sided and double-sided media. If the most significant bit of the

number of sides field is set to 1, then double-sided media are formatted. If the most
significant bit is cleared to 0, then single-sided media are formatted.

Control code Control list

$09 Count low byte $04
Count high byte $00
Number of sides $nn

Setinterleave

SetInterleave sets the sector interleave to be layed down on the disk by the Format call.

Control code Control list

$0A Count low byte $00
Count high byte ~ $00
Interleave $01 to $0C

SmartPort calls specific to Apple 3.5 disk drive 141

SmartPort calls specific to UniDisk 3.5

Five UniDisk 3.5 device-specific calls are provided as extensions to the Control and
Status calls. These device-specific calls may be used only with the UniDisk 3.5. To
determine whether a device is a UniDisk 3.5, examine the type and subtype bytes
returned from a DIB status call. If the type byte is returned with a value of $01 and the
subtype byte is returned with a value of $00, then the device is a UniDisk 3.5. Only the
control code and control list are defined for calls here implemented as extensions to
the Control call. For calls implemented as extensions to the Status call, only the status
code and status list are defined. Refer to the sections discussing the SmartPort Control
and Status calls earlier in this chapter for more information about these calls.

Eject
Eject ejects the media from a 3.5-inch drive.

Control code Control list

$04 Count low byte $00
Count high byte $00

Execute

Execute dispatches the intelligent controller in the UniDisk 3.5 device to execute a
65C02 subroutine. The register setup is passed to the routine to be executed from the
control list.

Control code Control list

$05 Count low byte $06
Count high byte $00
Accumulator value $xx
X register value $xx
Y register value $xx
Processor status value $xx
Low program counter $xx

High program counter $xx

142 Chapter 7: SmartPort Firmware

e Y R 7, B

N N Y

- SetAddress f
- SetAddress sets the address in the UniDisk 3.5 controller memory space into which the i
- DownLoad call loads a 65C02 routine. The download address must be set to free space

- in the UniDisk 3.5 memory map.

Control code Control list

$06 Count low byte $02
: Count high byte $00
Low byte address $xx |
High byte address $xx .

- Download

- Download downloads an executable 65C02 routine into the memory resident in the
~ UniDisk 3.5 controller. The address that the routine is loaded into is set by the
SetAddress call. The count field must be set to the length of the 65C02 routine to be
downloaded.

Control code Control list

$07 Count low byte $xx
Count high byte $xx
Executable 65C02 routine

UniDiskStat !
i

UniDiskStat allows an application to get more information about an error that occurs

during a read or write operation. It also allows an apphcaUOn to access the 65C02

register state after dlspatchmg the UniDisk 3.5 controller to execute a 65C02 routine via
the Execute call.

Memory-mapped 1/O addresses internal to the UniDisk 3.5 controller are shown in * jl
Figure 7-9 and Tables 7-4 and 7-5. ‘

Status code Status list

$05 Byte $04
Soft error $00
Retries $xx
Byte $00

A register after execute $xx
X register after execute $xx
P register after execute $xx

SmartPort calls specific to UniDisk 3.5 143

UniDisk 3.5 internal functions

Copy protecting a UniDisk 3.5 is more complicated than protecting a Disk II because
the 3.5-inch disk has its own controller. The drive itself (beyond the small 65C02
system that controls it) is somewhat intelligent; performing such operations as
stepping the drive to a half track is not possible with the double-sided Sony disk.

The design of the UniDisk 3.5 firmware, however, affords the copy-protection
engineer (CPE) tools with which to alter the data on the disk sufficiently to make
copying very difficult. In all cases, code or other information is downloaded to the
controller’s on-board RAM. The firmware provides a defined method for setting
RAM, but not for reading it; this increases the difficulty of the copy-protection buster’s
job. Information downloading is accomplished using the Set_Down_Adr and the
DownLoad commands, detailed in the SmartPort documentation.

Further, running nibble-copy programs with the UniDisk 3.5 is difficult to do. Nibble-
copy programs typically dump an entire track into memory and then try to make sense
of what they have read and duplicate the data stream. The UniDisk 3.5 controller
contains only 2K of RAM, and this limitation makes track dumping and copying
extremely difficult. A track would have to be dumped in 1 or 2K pieces, and then the
pieces would have to be correctly reassembled, processed in host memory, and
somehow written in 1 or 2K pieces to the target disk. (The difficulty of creating a
reasonable bit copier means that elaborate copy-protection measures may not be
necessary and that relatively simple techniques, such as simply changing marks, will
suffice.)

Mark table

All address and data marks used by the RdAddr, ReadData, WriteData, and Format
routines are located in page zero. The following details the table values and their

functions (note that these tables are all reversed from the order in which they appear
on the disk):

Function Address Default value

Data marks $008E $AD, $AA, $DS

Data-sync marks $0091 $FF, $FC, $F3, $CF, $3F, $FF
Bit-slip marks $0097 $FF, $AA, $DE

Address marks $009F $96, $AA, $D5

The CPE can alter the values in this table and format a disk with the new marks, and
read and write operations will recognize sectors with these new marks.

144 Chapter 7: SmartPort Firmware

The CPE must, however, be careful when changing the marks. The address, data, and
bit-slip marks were chosen so that no bytes in the user’s encoded data could be
mistaken for them, and the CPE should consider this when changing the marks.
Probably the safest marks to alter are the bit-slip marks because the firmware never
uses these to try to find a field; they are simply double checks to ensure that
synchronization was maintained during a read operation.

The data-sync marks could conceivably be altered and some identifying mark used
instead. The CPE should be aware, however, that this field is partially rewritten every
time the block is written and that whatever marks are there must guarantee the
synchronization of the IWM so that the first data-field mark (normally $D5) can be
read.

Hook table

Each major disk-access routine has a JMP instruction to jump through a hook in zero
page. Hooks in these routines are collected in a section of zero page known as the kook
table. Each hook is a 3-byte 65C02 JMP instruction that vectors to the corresponding
routine. This allows the CPE to install routines to take the place of ones such as RdAddr
and ReadData. Because the hooks are reset when power up occurs or a reset control
call is issued, the CPE may preserve the “default” address in a hook, point the hook at
his or her own routine, and then have this new routine end by jumping to the old
routine. This in effect allows the CPE to insert in his or her own code at strategic points
in the disk read and write processes.

The CPE must ensure that any code installed in place of a routine emulates the
behavior of the code it replaces. The functional and flag return specifications for the
routine must be obeyed; otherwise, higher-level routines will become confused. The
‘hookable” routines are as follows:

Address Vector Routine function

$0072 RdAddr Find and decode an address field
$0075 ReadData Find and load a data field into RAM
$0078 WriteData Write data-sync field marks, data, bit-slip marks

$007B Seek Turn motor on and seek the specified track
$007E Format Write address and data fields (all zeros)
$0081 WriteTrk Seek head and write track full of sectors

$0084 Verify Verify the integrity of an entire track

$0087 Vector Dispatch a command received from the host

Specifications for each of these routines follow. Note that you will be able to use these
functions more effectively if you understand the 3.5-inch disk data format.

. When bits of bytes are specified, they are numbered 76543210 and enclosed in
brackets []. Also, note that the controller supports two drives (drive 0 and drive 1),
even though all UniDisks 3.5 use a single-drive configuration (drive 0 only).

UniDisk 3.5 infernal functions 145

UniDisk 3.5 internal routines

RAAddr
Find and decode an address field.

Output Carry set on timeout, checksum, or bit-slip error; clear otherwise.
SectInfo (5 bytes) at $0027 (if carry clear).
On error: $0057[5] is set, meaning address error.

Register
requirements None. A, X, Y are not preserved.

This routine waits for the /READY line to go low and then waits for an address field to
spin by. A timeout of almost two sector times is allowed. If no address mark is found
during this period, or if the data in the address field has a bad checksum, or if the bit-
slip bytes are wrong, the routine returns with the carry flag set. If the carry flag is set,
then the status byte has the address error bit set. If a good address field was read, its
contents are denibblized and the results left in $27-$2B in reverse order from the way
they appear on the disk.

ReadData
Find and load a data field into RAM.
Output Carry set if timeout, checksum, or bit-slip error; clear otherwise.
Data read into buffers at $100, $640, and $740.
On error: $0057(3] set for bit slip, [4] set for checksum error.
Register

requirements None. A, X, Y are not preserved.

This routine searches for marks identifying a data field. This routine is called
immediately after a successful call to RdAddr; therefore, the timeout is extremely
short (25 bytes). After a data-field mark is found, the next byte is denibblized and
checked to see if it has the correct sector number, and an error is returned if it does
not. If the header is all right, the data is read, decoded on the fly, and placed in the
three data buffers in reverse order. The bit-slip marks are checked, and an error is
generated if they are not as expected. If an error occurs, the status byte $0057 is set to
indicate the type of error encountered.

146 Chapter 7: SmartPort Firmware

WriteData

Write data-sync field, marks, data, bit-slip marks.
Input Data in buffers at $100, $640, and $740; checksum.

Register
requirements None. A, X, Y are not preserved.

This routine is called just after RdAddr has found the correct address field. It writes out
the data-sync field, the data marks, the nibblized sector number, the data, and the bit-
slip marks. At this point, checksumming and pump priming will already have been
performed by the WritePrep routine.

Seek
Turn motor on and seek the specified track.

Input Cyl ($14): new cylinder ($00-$4F) to seek.
Drive ($13): drive currently selected.
CurCyl ($0D, $0E): cylinder where each head initially rests.

Output Carry set if seek error; clear otherwise.
CurNSect ($1A): number of sectors this cylinder.
On error: $0057(1] set for seek error.

Register
requirements None. A, X, Y are not preserved.

If CurCyl[7] for this drive is set, the routine recalibrates the head. The motor is turned
on, the stepping direction is set, and the correct number of step pulses is issued.

Format
Write address and data fields (all zeros).

Input Drive ($13): drive currently selected.
FormSides ($63): format a double-sided disk ($80).

Output Carry set if error; clear otherwise.
On error: $005E has $A7 error code.

Register
requirements None. A, X, Y are not preserved.

The formatter turns on the motor and checks whether a write-enabled disk is in the
drive. If one is, a sector image is generated and WriteTrk is called. Then Verify is
called; if verification fails, up to 10 retries are attempted. If FormSides is set to double
sided ($80), both heads are formatted before the head is stepped to the next track.

UniDisk 3.5 internal routines 147

—

WiriteTrk
Seek head and write track full of sectors.

Input Drive ($13): drive currently selected.
Cyl ($14): cylinder to format.
Side ($16): head number.
FormSides ($63): format a double-sided disk ($80).
Interleave ($62): set physical interleave.

Register
requirements None. A, X, Y are not preserved.

This routine seeks the head (f necessary), writes a large group of sync marks (to
guarantee the entire track), and then writes the appropriate number of sectors with the
correct interleave.

Verify

Verify the integrity of an entire track.

Input CurNSect ($1A): number of sectors this cylinder.
Output Carry set if error; clear otherwise.

On error: $0057 bits are set specifying error.

Register
requirements None. A, X, Y are not preserved.

This routine uses RdAddr and ReadData to verify that all sectors on the track are all
right, that sectors are unique and that the data fields can be read without error.

148 Chapter 7: SmartPort Firmware

Vector
Dispatch a command received from the host.
Input CmdTab ($4C..$54): command from SmartPort.

Output StatusTab ($56..$5B): set to $00.
StatByte ($5E): $80 for no error; error code otherwise.

Register
requirements None. A, X, Y are not preserved.

This routine looks in the command table, checks the validity of the command code
and parameter count, turns on the drive specified, and jumps to the routine that
services the type of command specified. It also sets up the default parameters for the
communication routines. If an error is detected in the parameter count or command
code, the status byte is set appropriately. The command table looks like this:

CMDTab DFB Command_Code ;0 = status, 1 = read, etc.
CMDPCount DFB Parameter_Count ;Logical count for this command
CMDRemain DS 0,7 ;Call specific

The contents of the last 7 bytes depend on the call type. They are the bytes after the
unit number in the SmartPort command list.

UniDisk 3.5 Internal routines 149

Memory allocation

The firmware does not use page 5 of RAM or the top 64 bytes of the zero page. The CPE
is free to install patches and other code in $0500-$05FF and $00CO-$00FF. Figure 7-9
shows the entire UniDisk 3.5 memory map as well as firmware RAM space use.

Memory layout

SFFFF

RAM layout

$0800

$0600
|IIIIIIIHHHHHHHHIIIIIIII
$0500

7/ s 7
o GcTe array l/O o $040C

SEO0O

Unimplemented

SOAO00

$0800

$§0200

$0200
$0100

Free zero page space
$00CO0

$0000

$0100

$0000

Figure 7-9
UniDisk 3.5 memory map

150 Chapter 7: SmartPort Firmware

Table 7-4
UniDisk 3.5 gate array I/O locations

Function data4 datal data2 datal data0
Read $800 LASTONE/ BUSEN/ WRREQ /GATENBL HDSEL
Wrt $800 TRIGGER ENBUS PH3EN IWMDIR HDSEL
Read $801 SENSE BLATCH1 BLATCH?2 LIRONEN CAO
Wrt $801 /RSTIWM /BLATCH /BLATCH DRIVE1 DRIVE2
CLR1 CLR2
Table 7-5
UniDisk 3.5 IWM locations
Location Specific label IWMDIR = 0 (drv) IWMDIR = 1 (host)
$0A00 PHASEQ reset CAO reset /BSY handshake
$0A01 PHASEO set CAO set /BSY handshake
$0A02 PHASE]1 reset CA1 reset
$0A03 PHASE1 set CA1 set
$0A04 PHASE2 reset CA2 reset
$0A0S PHASE2 set CA2 set
$0A06 PHASE3 reset LSTRB reset
$0A07 PHASE3 set LSTRB set
$0A08 MOTOROFF
$0A09 MOTORON
$0A0A ENABLE1
¢nAND DATADLDA
$0A0C L6 reset
$0A0D L6 set
$0AOE L7 reset
$0AOF L7 set
Memory allocation 151

T T ——

ROM disk driver

The ROM disk is a plug-in card that houses ROM that may be organized into blocks to
emulate a disk device or provide space for ROM-based programs. Although the
SmartPort has no built-in ROM disk, SmartPort does support an external ROM disk
driver.

Installing a ROM disk driver

The driver for a ROM disk must reside at address $F0/0000. The ROM disk may occupy
only the address space from $F0/0000 through $F7/FFFF. The base address of the
driver must contain the ASCII string ROMDISK in uppercase letters with the most
significant bit on. Entry to the ROM disk driver is through address $F0/0007. The
SmartPort firmware will search for a ROM disk driver during the boot process while
assigning unit numbers to each of the SmartPort devices. If the SmartPort finds the
ASCII string ROMDISK at address $F0/0007, it executes an Initialization call to the
ROM disk driver via the ROM disk entry point. If the ROM disk returns with no error,
the ROM disk driver is installed in the SmartPort device chain. If the ROM disk
Initialization call returns an error, the ROM disk driver is not installed in the SmartPort
device chain. Note that the ROM disk driver is called via a JSL instruction in 8-bit
native mode.

Passing parameters to a ROM disk

Call parameters are passed to the ROM disk from the SmartPort through fixed memory
locations in absolute zero page. All input to device-specific drivers is passed in an
extended format, even for standard SmartPort calls, so that the call parameters can
always be found in fixed locations. Note that standard calls are not changed into
extended calls; only parameter organization is affected.

Some parameters do not occupy contiguous memory when they are presented in an
extended format because the order of parameters has been prépared so the
parameters can be transmitted over the SmartPort bus to intelligent devices. Absolute
zero page locations $40 to 62 are saved by the SmartPort prior to their dispatch to the
ROM disk and are restored by the SmartPort after their return from the driver. Thus,
these locations are available for use by the ROM disk driver.

152 Chapter 7. SmartPort Firmware

~

A e o L Lttt ™

e

g

Call parameters are passed to the ROM disk driver as follows:

location Parameters Call type

$42 Buffer address (bits 0 to 7) All

$43 Buffer address (bits 8 to 15) All

$44 Buffer address (bits 16 to 23) All

$45 Command All

$46 Parameter count All

$47 Buffer address (bits 24 to 31) All

$48 Extended block (bits 0 to 7) ReadBlock and WriteBlock
Status code or control code Status and Control
Byte count (bits 0 to 7) Read and Write

$49 Extended block (bits 8 to 15) ReadBlock and WriteBlock
Byte count (bits 8 to15) Read and Write

$4A Extended block (bits 16 to 23) ReadBlock and WriteBlock
Address pointer (bits 0 to 7) Read and Write

$4B Extended block (bits 24 to 31) ReadBlock and WriteBlock
Address pointer (bits 8 to 15) Read and Write

$4C Address pointer (bits 16 to 23) Read and Write

$4D Address pointer (bits 24 to 31) Read and Write

Parameters returned to the application from the ROM disk driver are passed in

SR SASSC LTI U AR AAT e W VRS WS pUAMtAddtS Al A2 UAAL WAL ARNSETE NAAUER ALY WA QAL PGRUUSNE diid

absolute zero page locations as follows:

Location Output parameter passed

$000050 Error code
$000051 Low byte of count of bytes transferred to host
$000052 High byte of count of bytes transferred to host

All /O information passed between the application making the SmartPort call and the
ROM disk driver is passed through the buffer specified in the parameter list.

ROM disk driver 153

ROM organization

ROM for a ROM disk must contain the ROM disk signature string as well as a ROM disk
driver. A map of the ROM address space when portions of ROM are organized as
blocks is shown in Figure 7-10.

ROM disk blocks

SFN/XXXX+1
SFN/XXXX

ROM disk driver

$F00007
$F00000 ACSIl string 'ROMDISK’

Figure 7-10
The ROM disk

154 Chapter 7: SmartPort Firmware

e T W R

A block diagram of a ROM disk that occupies 128K of ROM (including the driver itself)
is shown in Figure 7-11. Note that no ROM space has been reserved for toolset

expansion in this example.

ROM bank boundary

ROM bank boundary

Block SFE
Block SFD
Block SFC

Total number of blocks = ROM size

Driver in base 512 byte block
of ROM bank SFO

Figure 7-11
Block diagram of a 128K ROM disk

Block $83
Block $82
Block $81
Block $80
Block S7F
Block S7E
Block $7D
Block §7C

Block $13
Block $12
Block $11
Block $10
Block SOF
Block $OE
Block $SOD
Block SOC
Block $OB
Block SOA
Block $09
Block $08
Block $07
Block $06
Block $05
Block $04
Block $03
Block $02
Block $01
Block $00

e

ROM disk driver
Signature bytes

Device size (number of blocks)

ROM disk driver

155

Summary of SmartPort error codes

SmartPort error codes are summarized in Table 7-6.

Table 7-6

SmartPort error codes

Acc value Error type Description

$00 No error No error occurred.

$01 BADCMD A nonexistent command was issued.

$04 BADPCNT A bad call parameter count was given. This error

occurs only when the call parameter list is not
properly constructed.

$06 BUSERR A communications error occurred in the TWM.
$11 BADUNIT An invalid unit number was given.
$1F NOINT Interrupt devices are not supported. |
$21 BADCTL The control or status code is not supported by the \
device. |
$22 BADCTLPARM The control list contains invalid information. ‘
$27 IOERROR The device encountered an 1/O error. |
$28 NODRIVE The device is not connected. This error can occur if
the device is not connected but its controller is.
$2B NOWRITE The device is write protected.
$2D BADBLOCK The block number is not present on the device.
$2E DISKSW Media has been swapped (extended calls only).
$2F OFFLINE The device is off line or no disk is in drive.
$30-$3F DEVSPEC These are device-specific error codes.
$40-$4F RESERVED Reserved for future use.
$50-$5F NONFATAL A device-specific soft error occurred. The operation

was completed successfully, but an abnormal
condition was detected.

$60-$6F NONFATAL These errors are the same as the errors in the $20-$2F
range. Bit 6 indicates a soft error.

156 Chapter 7: SmartPort Firmware

The SmartPort bus

The SmartPort bus is a daisy chain configuration of intelligent devices, sometimes
alled bus residents, connected to the disk port of the host CPU. A Disk II device may
be physically connected to the end of the SmartPort device chain on the Apple IIGS,
and its operation will be transparent to the host firmware. The Disk II device is

dormant when a SmartPort bus resident is addressed. The number of bus residents that
can be supported is limited by supply-power and IWM-drive considerations. Although
the software supports up to 127 bus residents, power requirements usually limit the
maximum number of residents to 4.

Drive selection is performed through the firmware. The command string contains a
byte specifying the device to be accessed. These device ID bytes are assigned by the
SmartPort at bus reset.

Two functions are strictly hardware invoked: bus reset and bus enable. Both of these

conditinong are invoked thronioh comhinations of nhase lines on the disk port that
never occur under normal Disk II operation (Both functions involve invoking

opposing phases, which is pointless on a Disk I1.) This allows a Disk II device and other
bus residents to stay out of each other’s way. The bus reset and enable functions are
summarized below.

Function PH3 PH2 PHI PHO

Enable 1 X 1 X
Reset 0 1 0 1

The state of the PHO line during the enable function can be either a 1 or a 0 because
PHO is used as a REQ handshake line cycled on a packet basis when the bus is enabled.
ACK is sensed from the device through the IWM write-protect sense status.

How SmartPort assigns unit numbers

The assignment of unit numbers is initiated by executing a call to the slot 5 boot entry
point. This assignment always begins with a bus reset. The reset flips a latch on all bus
residents, which causes the daisy-chained phase 3 line to become low. This makes all
daisy-chained devices incapable of receiving the bus-enable signal, which requires
phase 3 to be high.

The host then sends the ID definition command. Whenever a device receives this
command (with Enable), it assigns the unit number embedded in the command string
as its own unit number. Thereafter it will not respond to any command string with a
unit number other than that given it in the ID definition command.

The SmartPort bus 157

Upon completing the ID definition command, the bus resident reenables the phase 3
line, allowing the next resident to receive its ID definition command. This process
continues so long as there are bus residents. The last bus resident in the device chain
returns an exception, indicating that it is the last bus resident.

Although Disk II devices are connected to the disk port, they are not bus residents and
do not respond to the ID definition command. A resident determines that it is the last
intelligent device in the chain by sensing a signal, normally unused in Disk II
operations, which is grounded by all intelligent devices. If no bus resident or Disk II
device is daisy chained to the port, the phase 3 line is read as high.

SmartPort-Disk Il interaction

The disk port built into the Apple IIGS supports daisy-chained 5.25-inch disks (UniDisk
5.25, Disk II, or DuoDisk) by sharing the same disk port hardware between two
different ROM slot areas. The slot 5 ROM area contains the SmartPort interface and
ProDOS block device driver, and the slot 6 ROM area contains the Disk II interface.
The Disk II device is enabled by the disk port signal /ENABLE2. The SmartPort must
activate the /ENABLE2 line to communicate with intelligent bus residents. If this line
were not intercepted before being passed to daisy-chained devices, any attempt to talk
to devices on the bus would result in spurious operation of the Disk II at the end of the
chain.

For the Disk II to remain aloof from SmartPort activity, each resident must gate the
/ENABLE2 line so that whenever any SmartPort bus resident is enabled (PHASE1 and
PHASE3), any Disk II at the end of the chain is disabled. In other words, the
/ENABLE2 line is passed to daisy-chained devices only when either PHASE1 or
PHASES3 is low:

BUS ENABLE (PH1 and PH3) /ENABLE2 (daisy chained)

PHASE1=0 or PHASE3=0 /ENABLE2
PHASE1=1 and PHASE3=1 Deasserted (high)

Other considerations

All intelligent residents try to process every command packet sent over the bus; a
resident responding only if it recognizes its own ID, type, and subtype encoded in the
packet. The device type and command are used by the device to arbitrate between
extended and standard packets. Thus, one resident can tell when some other resident
is being accessed or if the packet type (extended or standard) is compatible with the
device. A device controller can therefore reduce its power consumption when it is not
being constantly accessed.

158 Chapter 7: SmartPort Firmware

Extended and standard command packets

The number of bytes passed over the SmartPort bus in a standard command packet is
the same as the number contained in an extended command packet. Standard
SmartPort command parameter lists can consist of up to 9 bytes. Extended SmartPort
command parameter lists can consist of up to 11 bytes. The command packet was
designed for a2 maximum of 9 bytes of information. The first 2 bytes always contain the
SmartPort command number and parameter count. The remaining 7 bytes consist of 7
bytes of the parameter list starting with the third byte for standard commands or the
fifth byte for extended commands; 7 bytes from the parameter list always are copied
into the command packet, even though the parameter list for the current command
may consist of fewer than 7 bytes.

SmartPort bus flow of operations

The general flow of control in the SmartPort is illustrated in Figure 7-12.

(ProDOS interface J

iocke'r monogemena—' Disk port (<= SmartPort bus

(SmorTPorT inTerfoce]

Figure 7-12
SmartPort control flow

Whenever a call is made to the SmartPort device driver that uses the SmartPort bus,
the command table sent to the device driver is converted into a command packet
before being sent to the device. The results of the call are also sent back from the
device in a packet. All data sent over the bus is placed in these packets.

% Note: Each byte of the packet is a 7-bit quantity (bit 7 is always set), a limitation
imposed by the TWM. All data sent is converted from 8-bit quantities to 7-bit
quantities before transmission.

The information of the packet can be broken down into the following categories:
general overhead

source and destination IDs

O
O
O contents type and auxiliary (aux) type
O contents status

]

contents

The SmartPort bus 159

The identifiers are 7-bit quantities assigned sequentially according to the device’s
position in the chain. The host is always ID=0. Because every byte in the packet has the
most significant bit set, the host is $80, the first device in the chain is $81, and so on.

The contents type consists of a type and aux type byte. Three contents types are
currently defined: Type = $80 is a command packet, type = $81 is a status packet, and
type = $82 is a data packet. Bit-6 is the command byte, and the aux type byte defines
the packet as either extended or standard. Aux type = $80 indicates a standard packet,
and $CO indicates an extended packet. Command = $8X indicates a standard packet,
and $CX indicates an extended packet.

The contents byte is used for status and data packets. It contains the error code for read
and write operations. The SmartPort returns the contents byte as an error code for the
call.

The contents itself consists of bytes of 7 bits (high bit set) of encoded data. Preceding
the bytes themselves are two length bytes. If the number of content bytes is
BYTECOUNT, then the first byte is defined as BYTECOUNT DIV 7, and the second
byte is defined as BYTECOUNT MOD 7. In other words, the first byte specifies the
number of groups of 7 bytes of content, and the second is the remainder. Note that the
second byte will never have a value greater than 6. Both these bytes have their most
significant bit set.

The general overhead bytes are packet begin and end marks, sync bytes (6, to ensure
correct synchronization of the IWMs), and a checksum. The checksum is computed by
exclusive ORing all the content data bytes (8 bits) and the IDs, type bytes, status bytes,
and length bytes. The checksum is 8 bits sent as 16.

Figure 7-13 demonstrates the sequence of signal transitions that define the protocol
for executing a read from a device. The signal transition points are described below.

1. Host asserts REQ when ACK is negated; command packet is coming from host.
. Host enables TWM and sends packet to device.

. Device deasserts ACK, signaling host that packet was received.

. Host responds by deasserting REQ.

- Device asserts ACK when it is ready to send response packet to host.

- Host asserts REQ when it is ready to receive response packet from device.

. Device enables IWM and sends response packet to host.

. Device deasserts ACK at end of packet.

. Host deasserts REQ when packet is received.

O O X N NN AN WN

1

160 Chapter 7: SmartPort Firmware

. Device asserts ACK to indicate it is ready to receive a command.

Dr

Drl

Drive data

Host data

Drive IWM QD\

Host IWM

ACK

"

2
s

Figure 7-13
SmartPort bus communications: read protocol

Figure 7-14 demonstrates the sequence of signal transitions that define the protocol
for executing a write to a device. The signal transition points are described below.

1.

. Command packet is sent.

N O N O N o W N

Host asserts REQ when ACK is negated and command packet is coming from host.

. Device asserts ACK, signaling it received the packet.

. Host negates ACK, finishing the command handshake.

. When REQ is negated and device is ready to receive data, device negates ACK.
. When ACK is negated and host is ready to send, host asserts REQ.

. Host sends write data.

. Device asserts ACK, signaling it received the REQ.

. Host negates REQ, allowing device to write data to its media.

The SmartPort bus 161

10. Device negates ACK and writes data to its media.

11. Host responds to negated ACK by asserting REQ, signaling it is ready for status.
12. Device responds to REQ by sending status to host.

13. Device asserts ACK, signaling status has been sent.

14. Host acknowledges receipt of status by negating REQ.

15. Device negates ACK when it is ready for the next command.

o o ee o |

Drive IWM

Host IWM

Drive data

Host data

Figure 7-14
SmartPort bus communications: write protocol

Figure 7-15 illustrates that a command packet contains as few as zero and as many as
767 data bytes. Each packet of 7 data bytes is encoded in a specific manner, described
below, to assure that each data byte that is part of the packet has its most significant bit
set. To allow all possible bit combinations to be transmitted in this manner, it is
necessary to transmit 8 data bytes of encoded information for every 7 bytes of data. If
there is not an even multiple of 7 bytes in the total data block to be sent, then the
remaining O to 6 data bytes are encoded and sent, preceding the packets of 7 encoded
bytes, as 2 to 7 data bytes as described below.

162 Chapter 7: SmartPort Firmware

$C3 Packet begin mark

Destination ID ($80-$FE)
4 Host ID always = $80,

first device in chain = $81,
second device in chain =$82 . . .

Source ID ($80-SFE)

3
Packet type (§80—Command packet)
($81—Status packet)
4 ($82—Data packet)
5 Aux type ($80)
6 Data status byte (7 bits) ($80-$FF)
7 Length of packet contents "odd” bytes ($80-586)
8 Length of packet contents groups of 7 data bytes ($80-$ED)

Groups of 7 data bytes written as 8;
Packet confenfs most significant bits all in first byte

lc61cd1c21cO
Checksum (8-bit XOR of packet data
and bytes 1-8 above) sent FM;

every other bit = 1

1c71cb1c31cl

SC8 Packet end mark

Figure 7-15
SmartPort bus:packet format

The SmartPort bus 163

For each group of 7 data bytes in the block to be sent, take the bits of which those bytes
are composed and rearrange them as shown in Figure 7-16. This changes the 7 bytes of
input data into 8 bytes of encoded data, in which each output data byte has its most
significant bit set.

Odd group of Group of Group of Group of
0-6 data bytes 7 data bytes 7 data bytes oo 7 data bytes
(2-7 bytes sent) (8 bytes sent) (8 bytes sent) (8 bytes sent)

Packet sizes range from 0 to 767 data bytes.

Figure 7-16
SmartPort bus packet contents

As Table 7-7 shows, the first byte contains the most significant bit of each of the 7 data
bytes, the second byte contains the seven least significant bits of the first data byte, the
third byte contains the seven least significant bits of the third data byte, and so on for a
total of 8 bytes of encoded data. This data is transmitted with the byte containing the
most significant bits first, followed by each of the other 7 encoded data bytes in turn.
Thus, you can see that if there are fewer than 7 data bytes in an odd group, fewer than 8
bytes of encoded data will be required to transmit this odd group.

Table 7-7

Data byte encoding table

Top bits byte d1, d2, d3, d4 ds, d6, d7;
Byte 2 d2g d2g d24 d2, d2, dz, dz,
Byte 4 d4¢ d4s d4, d4s d4, d4, d4,
Byte 6 d6g d6s déy d6, d6, dé, d6,

The number of bytes in the odd group is the remainder of the number of data bytes in
the packet divided by 7. When encoding the odd bytes, assume that the rest of the data
bytes making up a group of 7 bytes all contain zeros. Also note that if there are no odd
bytes (that is, if the packet size divides by 7 evenly with no remainder), the odd-bytes
group is simply omitted. Similarly, if the number of bytes in the packet is less than 7,
there will be no encoded packets of 7 bytes, but only an odd-bytes group will be sent.

164 Chapter 7: SmartPort Firmware

For example, if you are sending a 512-byte packet, the number of groups of 7 bytes is
73, with a remainder of 1. Therefore, the first data byte will be sent as an odd group,
followed by 73 groups of 7 bytes each. The groups of 7 bytes will be encoded as
indicated above and the odd bytes (byte number 1 of the packet, data bits 7..0) will be
sent as shown in Figure 7-17.

dl bits 7.0 a2 bits 7..0 a3 bits 7.0 o4 bits 7..0 as bits 7..0 a6 bits 7..0 a7 bits 7.0

Figure 7-17
Bit layout of a 7-byte data packet

Top bits byte 1 }dl,] O 0 0 0 0 0
Byte 1| 1 |dl,|dlg|dl,|dl,|dl,|dl,|dl,
Figure 7-18

Transmitting a 1-byte data packet

Note that the top bits for data bytes 2 through 7 in this example are set to zero, and the
data bytes that would have contained the least significant data bits of bytes 2 through 7
are not transmitted. This is simply a special case of an instance of a group of 7 bytes.

Tables 7-8 and 7-9 provide a visual summary of the contents of the standard and
extended command packets. Where there is an asterisk in the table, the value of the
corresponding byte position is undefined and should be ignored by the device.

The SmartPort bus 165

—

Table 7-8

Standard command packet contents E
Byte Status ReadBlock WriteBlock Format Control Init Open Close Read Write E
1 $00 $01 $02 $03 $04 $05 $06 $07 $08 $09]
2 Param Param Param Param Param Param Param Param Param Param :
count count count count count count count count count count P
3 Byte 3 Byte 3 Byte 3 . Byte 3 * Byte 3 Byte 3 Byte 3 Byte 3 ;
of of of of of of of of -
param param param param param param param param
list list list list list list list list
4 Byte 4 Byte 4 Byte 4 . Byte 4 * Byte 4 Byte 4 Byte 4 Byte 4 ,
of of of of of of of of | '
param param param param param param param param
list list list list list list list list
5 . Byte 5 Byte 5 Byte S Byte 5 i ‘
of of of of | ‘
param param param param I
list list list list
6 . Byte 6 Byte 6 Byte 6 Byte 6 ‘
of of of of
param param param param
list list list list
7 . Byte 7 Byte 7 Byte 7 Byte 7
of of of of
param param param param
list list list list
8 Byte 8 Byte 8
of of
param param
list list
9 * L L - - - L Byte 9 BYte 9
of of
param param
list list

* A byte with an indeterminate value; the device should ignore the byte.

166 Chapter 7: SmartPort Firmware

Table 7-9

Extended command packet contents

Byte Status ReadBlock WriteBlock Format Control Init Open Close Read Write
1 $40 $41 $42 $43 $44 $45 $46 $47 $48 $49
2 Param Param Param Param Param Param Param Param Param Param
count count count count count count count count count count
3 Byte 5 Byte 5 Byte 5 * Byte 5 * Byte 5 Byte 5 Byte 5 Byte 5
of of of of of of of of
param param param param param param param param
list list list list list list list list
4 Byte 6 Byte 6 Byte 6 ‘ Byte 6 * Byte 6 Byte 6 Byte 6 Byte 6
of of of of of of of of
param param param param param param param param
list list list list list list list list
5 * Byte 7 Byte 7 * * * * * Byte 7 Byte 7
of of of of
param param param param
list list list list
6 y Byte 8 Byte 8 . ’ y . . Byte 8 Byte 8
of of of of
param param param param
list list list list
7 * Byte 9 Byte 9 * * * * * Byte 9 Byte 9
of of of of
param param param param
list list list list
8 ¢ * * ¢ * * ¢ Byte 10 Byte 10
of of
param param
list list
9 * * * * * . ¢ Byte 11 Byte 11
of of
param param
list list
* A byte with an indeterminate value; the device should ignore the byte.
The SmartPort bus 167

Chapter 8

Interrupt-Handler
Firmware

169

This chapter describes how the Apple IIGS handles interrupts from the available
interrupt sources. You can find additional information about interrupts in

Appendix D, “Vectors.” This chapter describes interrupts in general and the

Apple IIGS built-in interrupt-handler firmware in particular and how to manage
environment variables during interrupt handling. It also summarizes all interrupt
sources, discussing how often each source interrupts the system and the relative
priority assigned by the system to each source, and provides some details about Break
instructions, the AppleMouse™, and serial-port interrupt handling.

As a user’s program runs, it may get interrupted by various sources to process
important external inputs. The system assigns priorities to each of these interrupt
sources and handles them in a defined sequence. When the user’s program is
interrupted, the state of the system at the time of the interrupt is saved. On completion
of interrupt processing, the program can continue as though nothing had happened.

There are many reasons for the system to interrupt the execution of a program. For
example, if the user moves the mouse, the system should read the mouse location to
keep the pointer location current. If the system handles the interrupt promptly, the
mouse pointer’s movement on the screen will be smooth instead of jerky and uneven.
Or your program may be performing another operation while characters are being
received in a serial input buffer, and you do not want to lose any characters from the
input stream. These conditions, and many others, can cause your program to be
interrupted to handle an error or some other special condition that requires
immediate attention.

The Apple IIGS interrupt-handler firmware supports interrupts in any memory
configuration. To do this, the system saves the machine’s state at the time of the
interrupt, placing the Apple IIGS in a standard memory configuration before calling
your program’s interrupt handler, and then restores the original state when your
program’s interrupt handler is finished.

If you write your own interrupt-processing routines, you can attach them to the system
by modifying the interrupt vector locations specified in Appendix D, “Vectors.”
However, you must obey all of the conventions specified in this chapter regarding
interrupt processing and make sure to restore the environment to the state in which
you found it on entry to your interrupt-processing routine. This will allow the system to
restore the environment to its original state.

170 Chapter 8: Interrupt-Handler Firmware

What is an interrupt?

An interrupt is most often caused by an external signal that tells the computer to stop
what it is currently doing and devote its attention to a more important task. Besides
this external hardware-related signal, software interrupts are possible as well.

Hardware interrupt priorities are established through a daisy-chain arrangement using
two pins, INT IN and INT OUT, on each peripheral-card slot. Each peripheral card
breaks the chain when it issues an interrupt request. On peripheral cards that don’t use
interrupts, the designer of the peripheral card should connect these pins to one
another, thereby passing the interrupt signal directly through the card slot.

When the Interript Requast (IRQ) line oa the Apple 11G§ microprocassor is activated
or when a software interrupt occurs, the microprocessor transfers control to the
interrupt-processing routines by jumping through vectors stored in ROM. The built-in
interrupt handler processes the interrupt if the application has not provided its own
interrupt handler.

What is an interrupt? 171

The built-in interrupt handler

The Apple IIGS built-in interrupt handler performs a sequence of steps to handle
system interrupts. Figure 8-1 shows the structure of the built-in interrupt handler.

EABORT

Save
NABORT IRQ 522?;51 | some state
information
NIRQ

Set flags to
> identify source | COP| Bank SE1

¢

NCOP ;l —J»| vector
65C816 SCO71-SCO7F — Simulate
interrupt ECOP Bank SE1 | C Break
vectors Abort ——— | Oht
(Bank $FF) [NIRQ vector Switch
IRQBRK ;?gh
NMI NMivector L_g | Enter speed
»> in bank $03 Monitor
No Yes
Break handler
JSL AppleTalk Yes
JSL serial interrupt ¢
No
No Restore
JSL SrexX <@¢——o state
JSL SrevyY g—moi Pfr': al *
JSL SrcZZ (and so on) <@——— ?ourec;es Yes
JSL other < Exit
interrupt
‘ ($3F0)
Bank $00
(S3FE)
Bank $00

Figure 8-1
Built-in interrupt handler

172 Chapter 8: Interrupt-Handler Firmware

If /O shadowing is on, then the system ROM in bank $FF is shadowed (and readable)
in bank $00. The system jumps indirectly through the interrupt vector located either at
EIRQ ($FFFE, $FFFF) if it was running in emulation mode when the interrupt occurred
or at NIRQ ($FFE4, $FFES) if it was running in native mode.

Important

If 1/O shadowing is off, RAM will be addressed in the memory space of bank $00 in

. the area of SFFEO-SFFFF, the location at which the interrupt vectors are stored.
When an interrupt occurs, the 65C816 uses the Interrupt vector located in the
RAM vector table if I/O shadowing is off and uses the vector located in the ROM
vector table if I/O shadowing is on. If you have not correctly set up the RAM
vectors and you tumn off I/O shadowing, the system will fail.

Both EIRQ and NIRQ jump to ROM located within the soft-switch area at
$C071-$CO7F. This special ROM code sets status flags that identify the type of interrupt
that has just occurred.

At this point, the system tests to see whether the interrupt was a result of a software
Break instruction. If it was, the system vectors to the break handler (normally the
system Monitor) through the user interrupt-handler vector in bank $E1. An
application will patch this vector only if it wants to be responsible for handling or to be
informed about all interrupts that occur. If the application simply wants information,
it must save the vector value that the application finds in this location and then jump
through this vector as the user-interrupt code is completed. Saving and using the
vector allows the system to proceed as though the application had never gotten in the
way in the first place. If the application wants to handle all interrupt processing on its
own, it must be responsible for restoring any environment variables that it changes
and must execute an RTI instruction directly from its own code, returning to the
application that was interrupted.

If the interrupt source was not a Break instruction, the interrupt handler saves the
absolute minimum amount of information about the machine state. The interrupt |
source might have been AppleTalk (tested first) or the serial port (tested nexD. If you é
are running at high baud rates and if interrupt processing takes too long, you might
begin to miss characters. To save the minimum machine state, save only the
environment variables that have to be used in the routine that saves an incoming serial
character in a buffer and points the buffer pointer to its next location. To see whether
the interrupt was from a serial port, the SCC is tested. If it is a serial interrupt, the
firmware performs a JSL instruction through a patch address in bank $E1 to the port
handler (see Appendix D, “Vectors,” for more information).

The built-in Iinterrupt handler 173

If the port handler returns with the carry bit set, the system does not have an internal
serial-port handler installed. The interrupt handler now proceeds to save the rest of
the machine state and establish a specific interrupt memory configuration as
described in the section “Saving the Current Environment” later in this chapter. (You
must poll each of the possible interrupt sources to determine which requires service.)

At this point, the interrupt system begins a polling loop, testing each of the possible
interrupt sources in turn. If no internal interrupt handler is installed, then (and only
then) the firmware jumps through the user interrupt vector routine to handle the
interrupt. The address of the user interrupt routine is found in bank $00, addresses
$3FE (low byte) and $3FF (high byte).

The $3FE interrupt handler (user interrupt vector routine) must do the following:
O verify that the interrupt came from the expected source

O handle the interrupt appropriately

O clear the appropriate interrupt soft switch

o

restore everything to the state it was in when the Interrupt Request routine was
entered, if your routine has made any changes to the state of the machine

O return to the built-in interrupt handler by executing an RTI instruction

After the user interrupt vector routine completes its action, the built-in interrupt
handler restores the memory configuration and then executes another RTI to return to
where it was when the interrupt occurred.

Here are some factors to remember when you are dealing with programs that run in an
interrupt environment:

O There is no guaranteed maximum response time for interrupts because the system
may be performing a disk operation that lasts for several seconds when the interrupt
occurs.

O Interrupt overhead will be greater if your interrupt handler is installed through an
operating system'’s interrupt dispatcher. The length of delay depends on the
operating system and on whether the operating system dispatches the interrupt to
other routines before calling yours.

174 Chapter 8: Interrupt-Handler Firmware

A

Summary of system interrupts

Table 8-1 lists the source and type of each interrupt and describes each one.

Table 8-1

Summary of system interrupts

Interrupt source Type Description

Power up RESET Generated by powering up Apple IIGS.

Reset key RESET Generated by the ADB microcontroller when
Control-Reset is pressed.

External card RESET Available.

External card NMI Used only for debugging.

Abort signal ABORT Activated by memory card slot.

COP instruction COP/native In native mode, the user executed a COP
instruction.

COP COP/emulation In emulation mode, the user executed a COP
instruction.

Break instruction BRK/native In native mode, the user executed a Break

(BRK) instruction.

g Break BRK/emulation In emulation mode, the user executed a Break
(BRK) instruction.

AppleTalk IRQ Interrupts upon address recognition or an
error.

Serial input #1 IRQ Interrupts when transmitter is empty,

(SCC channel A) transmission is received, or an error
occurs.

Serial input #2 IRQ Same as serial input #1.

(SCC channel B)
Scan line IRQ Interrupts at end of requested scan lines.

(continued)

Ssummary of system interrupts 175

_|

Table 8-1
Summary of system interrupts (continued)

Interrupt source Type Description

Ensoniq chip IRQ Interrupts when an oscillator completes a
waveform table (32 possible interrupts from
here).

VBL signal IRQ Interrupts when vertical blanking (VBL) is
requested.

Mouse IRQ Interrupts as requested at mouse button press
or movement or at a VBL signal.

Quarter-second IRQ Interrupts system every 0.26667 second for

timer AppleTalk use.

Keyboard IRQ Interrupts upon keypress.

Response IRQ Generated when data is ready for the system

from the Apple DeskTop Bus (ADB)
microcontroller; initiated as a result of a
system-generated command.

SRQ IRQ Generated when an ADB device requires
servicing.

Desk Manager IRQ Generated by the ADB microcontroller when
Control-G-Esc is pressed.

Flush command IRQ G-Control Delete was pressed.

Micro abort IRQ Generated if the ADB microcontroller detects
a fatal error within itself.

Clock chip IRQ A 1-second timer interrupt is generated by
the 1-hertz signal from the clock chip through
the VGC chip.

External card IRQ The card wants the attention of the 65C816.

EXTINT IRQ Available from the VGC, but not to hook an
external interrupting device; hardware is not
available.

176 Chapter 8: Interrupt-Handler Firmware

—

Interrupt vectors

Table 8-1 described the sources of interrupt and named the interrupt vector that
contains the address of the routine that processes each interrupt. Table 8-2 defines the
locations at which each of the named interrupt vectors resides.

Table 8-2

Interrupt vectors

Address Name Description

$FFFE-$FFFF IRQVECT Emulation-mode IRQ/BRK vector

$FFFC-$FFFD RESET Emulation- or native-mode RESET vector

$FFFA-$FFFB NMI Emulation-mode NMI vector

$FFF8-$FFF9O EABORT Emulation-mode ABORT vector

$FFF4-$FFF5 ECOP Emulation-mode COP vector j
$FFEE-$FFEF NIRQ Native-mode IRQ vector |
$FFEA-$FFEB NNMI Native-mode NMI vector

$FFE8-$FFE9 NABORT Native-mode ABORT vector

$FFE6-$FFE7 NBREAK Native-mode BRK vector

$FFE4—-$FFES NCOP Native-mode COP vector

If I/O shadowing is on, the vectors contained in ROM are always used by the 65C816,
regardless of the language-card settings. This allows you to run native-mode code with
interrupts enabled in old applications.

If the application program or operating system disables I/O shadowing in bank $00 or
$01, then either the application program or the operating system must copy the ROM f
vectors from $FFEE to $FFFF and the code from $C071 to $CO7F into RAM at the same ?
locations before enabling interrupts. If the code is not copied from ROM to RAM, the
Monitor’s interrupt code cannot be used.

Interrupt priorities

The 65C816 processes each type of interrupt on a priority basis. For instance, if several
of the many IRQ interrupts should occur at the same time, the 65C816 will process all
AppleTalk IRQs before any keyboard interrupts. Priorities for each type of interrupt
are indicated by their relative position in the following paragraphs. In other words,

the highest-priority interrupts appear closest to the beginning of these descriptions.
Lower-priority interrupts appear later in the descriptions.

Summary of system interrupts 177

RESET

RESET forces emulation mode. The interrupt is processed by the firmware and then
vectors to the user link. A cold start attempts to boot a disk. A cold start can be
performed in two ways:

O by turning the power off and on

O by pressing G-Control-Reset

RESET cold-start functions are as follows:

sets up video

sets video as output device

sets keyboard as input device

reads clock chip and places system configuration in firmware RAM
sets up system to match configuration in firmware RAM

sets up the power-up byte so the next RESET performs a warm start

O 0O oo oo o

scans slots for Disk II devices and sets motor-on detect bit (motor-on detect causes
the FPI chip to slow the system down to 1 MHz when the motor-on soft switch is
enabled, and it restores the system speed when the motor is turned off)

O goes to, or scans, for boot device (if boot device is found, jumps to it; if no boot
device is detected, switches in Applesoft BASIC and jumps to it)

A warm start vectors to user links. If user did not alter links, then a BASIC cold start is
executed. A warm start can be performed in two ways:

O by pressing Control-Reset

O by using peripheral cards (pulling RESET line low)

The system executes the following reset warm-start functions:
O sets up video

sets video as output device |

o

sets keyboard as input device
reads image of system configuration in firmware RAM
sets up system to match configuration

generates tone (beep replaced with tone)

O 0O oo o

jumps to user reset vector
NMI

NMI vectors to user link. No NMI interrupts are used by the Monitor. Peripheral cards
pull NMI line low.

178 Chapter 8: Interrupt-Handler Firmware

ABORT

ABORT vectors to the user link. If no user link exists, it vectors to the break handler that
displays the address and opcode of the code being executed at the time the abort pin
on the 65C816 was pulled low (see BRK). The ABORT interrupt can be activated only
by hardware installed in the memory-expansion slot.

corp

COP vectors to the COP (coprocessor opcode) manager vector in RAM, which points 1
to the firmware. If the COP manager is not installed, the firmware displays the COP
message via a software COP instruction.

In emulation mode, COP prints the following:

bb/addr: 00 cc COP cc
A=aaaa X=xxxx Y=yyyy S=ssss D=dddd P=pp
B=bb K=kk M=mm QO=gqg L=1 m=m x=Xx e=1

In native mode, COP prints the following:

bb/addr: 00 cc COP cc
A=aaaa X=xxxX Y=yyyy S=ssss D=dddd P=pp
B=bb K=kk M=mm QO=qq L=1 m=m x=x e=0

% Note: The preceding formats are for a 40-column screen. On an 80-column screen,
the second two lines become one line. The cc appearing in both modes is the
operand of the COP instruction and indicates to the user where the COP occurred
(800 through $FF are valid COP operands).

BRK

In emulation mode, the interrupt vectors to the interrupt (IRQ) handler and then to
the break handler. In native mode, the interrupt vectors directly to a break handler.
This occurs via a software BRK instruction only. The break handler saves as much data
as the interrupt handler. This allows you to invoke the Monitor Resume command (R) ’
to continue program execution. '

In emulation mode, the Break instruction prints the following:

bb/addr: 00 bc BRK cc
A=aaaa X=xxXxXX Y=yyyy S=ssss D=dddd P=pp
B=bb K=kk M=mm Q=qg L=1 m=m x=X e=1

In native mode, the Break instruction prints the following:

bb/addr: 00 bc BRK cc
A=aaaa X=xxXxXX Y=yyyy S=ssss D=dddd P=pp
B=bb K=kk M=mm QO=gqqg L=1 m=m x=x e=0

% Note: The preceding formats are for a 40-column screen. On an 80-column screen,
the second two lines become one line. The cc appearing in both modes is the
operand of the BRK instruction and indicates to the user where the BRK occurred
(300 through $FF are valid BRK operands).

Summary of system interrupts 179

IRQ

IRQ interrupts are as follows:

AppleTalk: This interrupt has the highest priority because its code is very time
intensive; data can be lost if the SCC is not read within 104.167 microseconds
(baud = 230,400) after an AppleTalk SCC interrupt occurs.

Serial ports: In interrupt mode, data will be lost if the SCC is not read within 1.094
milliseconds (baud = 19,200) after the interrupt occurs.

Scan line: The scan-line interrupt can occur every 63.694 microseconds. When the
video counters count down to zero, the interrupt occurs. The video counters reach
zero when the scanning beam reaches the right side of the scan line.

Ensoniq chip: The Ensoniq chip interrupts when the waveform buffer is completed.
Because the chip contains 32 oscillators, there are 32 possible interrupts from the
chip.

VBL: The VBL interrupts every 16.6667 milliseconds. The interrupt occurs when the

scanning beam is retracing from the bottom-right corner to the upper-left corner of
the screen. (Note: Using the heartbeat interrupt handler is the approved method of
executing VBL interrupt tasks.)

Mouse: The mouse interrupts only if the interrupt option is specified. The interrupt
options are mouse movement, mouse button press, and VBL signal.

Quarter-second timer: This timer interrupts every 0.26667 second. The timer is used
by AppleTalk to trigger event processing.

Keyboard: The keyboard interrupts if a key is pressed.

Response: If a command is sent to the ADB microcontroller, the interrupt occurs
when the "done" flag is set. The microcontroller interrupts the system when the
response data is ready for the system to read. If this interrupt occurs, control is passed
to the response manager.

SRQ: If an ADB device requires servicing, an SRQ (service request) is issued. This
event can interrupt the system. When this interrupt occurs, control is passed to the
SRQ manager.

Desk Manager: The ADB microcontroller causes this interrupt if Control-G-Esc is
pressed. Control is then passed to the Desk Manager,

Flush: If G-Control-Backspace (Delete) is pressed, the ADB microcontroller clears its
internal type-ahead buffer, issues a Flush command to external keyboards, and causes
an interrupt. If this interrupt occurs, control is passed to the Scrap Manager.

Micro abort: If the ADB microcontroller detects a fatal error and the fatal-error
interrupt occurs, the system is interrupted. If this interrupt occurs, control is passed to
the ADB Tool Set.

Clock chip: The clock chip interrupts once each second.

External cards: External cards cause interrupts as defined by the card manufacturer.
180 Chapter 8: Interrupt-Handler Firmware

Environment handling for interrupt processing

For each interrupt discussed in the previous section, the processor can be in either
emulation or native mode. Each mode has its own interrupt vector; therefore, there
are two different entry points to the interrupt handler. To process interrupts correctly,
the system interrupt handler must save the current environment, set the interrupt
environment, and process the interrupt through the appropriate interrupt handler.
(You can find more information about saving and restoring the environment in
Chapter 2, “Notes for Programmers.” That chapter contains sample assembly-
language code that saves a part of your environment and sets the system into the
correct mode for interrupt processing.)

Saving the current environment

On entry to each interrupt, the system interrupt handler saves the current
environment and sets the program bank, data bank, and direct-page register contents
to zero.

The state of the machine upon entry into each interrupt handler is indicated by the
contents of the following registers:

0 program bank

O data bank
direct register
processor status

O

o

O A register
0 X register
O

Y register

The RAM or ROM state, including emulation or native mode, is indicated by the
following:

language-card state (bank 1 or 2, ROM or RAM)
main or alternate memory (and main and alternate zero page)

80STORE switch
80STORE switch

40- or 80-column video
main stack or zero page in use

speed register

O o o o oo o o

Shadow register

Environment handling for interrupt processing 181

Going to the interrupt environment

If the interrupt can be processed by the firmware or a tool set, the processor vectors to
the appropriate handler in native mode, 8-bit m/x, in high speed. If the interrupt
cannot be processed by the firmware, the processor performs the following steps:

Switches to emulation mode

Switches speed to 1 MHz

Switches in text page 1 to make main screen holes available
Switches in main memory for reading and writing

Maps $D000-$FFFF ROM into bank $00

Switches in main stack and zero page

NV oA N e

Saves the auxiliary stack pointer and restores the main stack pointer

After the environment is saved and the new environment is set, the interrupt handler
checks for the source of the interrupt. If the interrrupt is a firmware interrupt only (a
BRK or COP instruction), the firmware jumps (using a JSL) to the appropriate firmware
routine. If it is an interrupt that is passed directly to the user, then the firmware passes
the interrupt to the user via the appropriate links. An interrupt can be both processed
by the firmware and passed to the user. If both occur, the preceding rules listed still
hold, except that the particular firmware interrupt handler will return to the main
interrupt handler with carry set (C = 1) instead of clear (C = 0), which indicates that the
firmware processed the interrupt and the user does not need to know about it.

Restoring the original environment

After the interrupt has been processed, the system interrupt handler restores the
environment and registers to their preinterrupt state and performs an RTI, returning to
the executing program.

% Note: The peripheral card (or equivalent internal card) in use is responsible for
saving its slot number in the form $Cn (n = slot number) at MSLOT ($0007F8).
MSLOT is used in the interrupt handler to restore the currently executing slot
number’s $C800 space after an interrupt has been processed.

Emulation-mode interrupts are supported in bank $00 only. Native-mode
interrupts are supported everywhere in memory. Therefore, code running
anywhere ‘except in bank $00 must be native-mode code.

182 Chapter 8: Interrupt-Handler Firmware

Handling Break instructions

In emulation mode, the Apple IIGS detects a software Break (BRK) instruction as an
IRQ and jumps through the emulation-mode IRQ vector. In that code, the firmware
determines that a Break instruction was issued and so jumps through the emulation-
mode BRK vector. In native mode, the 65C816 can tell the difference between BRK
and IRQ, so it jumps directly through the native-mode BRK vector.

Apple lIGS mouse interrupts

The Apple DeskTop Bus (ADB) microcontroller periodically polls the ADB mouse to
check for activity. If the mouse has moved or the mouse button has been pushed, the
mouse firmware will respond to the microcontroller by returning 2 bytes of data. The
microcontroller returns this data to the system by writing both mouse data bytes to the
GLU chip (mouse byte Y followed by byte X—this enables the interrupt). Data bytes
are read only if the Event Manager (if active) or the application program issues the
mouse firmware call or the tool call ReadMouse. The GLU chip is the general logic unit
that provides logic elements enabling the 65C816 to communicate with the ADB
microcontroller.

The Apple IIGS mouse firmware causes interrupts for the 65C816 microprocessor only
if the interrupt mode has been selected via firmware. The Apple IIGS mouse interrupts
in synchronization with the Apple IIGS vertical blanking signal (VBL). The mouse can
interrupt the 65C816 a maximum of 60 times per second. This cuts down on the burden
the mouse puts on the 65C816.

At power-up or reset, the GLU chip turns the mouse interrupt off and enters the mouse
into a noninterrupt state.

Serial-port interrupt notification

When a channel has buffering enabled, the firmware services all interrupts that occur
on that channel. If an application wishes to service interrupts for a given channel
itself, the application should disable buffering using the BD command in the output
flow. If the buffering mode is off, the serial-port firmware will not process any
interrupts. The system interrupt handler will transfer control to the user’s interrupt
vector as $03FE in bank $00 (this is the ProDOS user interrupt vector). The user’s
interrupt service handler is then completely responsible for all serial-port interrupt
service. You can find further details about the serial-port firmware and its commands
in Chapter 5, “Serial-Port Firmware.”

Serial-port interrupt notification

183

If the application does not want to disable buffering, but does wish to be notified that a
certain type of serial-port interrupt has occurred, the application can instruct the
firmware to pass control to an application-installed routine after the system has
serviced the interrupt. The application tells the firmware when it wishes to be notified
and establishes the address of the application’s completion routine by using the
SetIntInfo routine. This call guarantees that the completion routine will get control
when a specific type of interrupt occurs, but only after the serial-port firmware has
processed and cleared the interrupt. The application then uses the GetIntInfo routine
to determine which interrupt condition occurred.

A terminal emulator offers a typical example of when interrupt notification might be
desirable. The emulator usually should perform input and output character buffering,
handshaking, and other such operations. The terminal emulator can be designed to
allow the firmware to handle all character-buffering details. The designer of the
emulator can have the firmware signal this emulator program when the firmware
receives a break character. To enable this special-condition notification, the emulator
application sets the break interrupt enable function by using the SetIntInfo routine.
When the firmware receives a break character, the firmware SCC interrupt handler
then records and clears the interrupt and finally passes control to the emulator’s
completion routine. This routine calls GetIntInfo, and if the break bit is set, the
completion routine knows that a break character has been received.

Note that all interrupt sources (except receive and transmit) cause an interrupt on a
transition in a given signal. This means that the user’s interrupt handler will get
control passed to it on both positive and negative transitions in the signals of interest.
For example, a break-character sequence causes two interrupts: one at the beginning
of the sequence and one at the end. The user’s interrupt handler should take this into
account. A routine can always determine the current state of the bits of interest by
using the GetPortStat routine.

The interrupt completion routine executes as part of the firmware interrupt handler
and must run in that environment. In addition, the following environment variables
must be preserved at their entry to your routine:

DBR = $00, e=0, m=1, x=1

Registers A, X, and Y need not be preserved.

184 Chapter 8: Interrupt-Handler Firmware

Chapter 9

Apple DeskTop Bus
Microcontroller

185

This chapter describes the Apple DeskTop Bus (ADB) microcontroller. This hardware
device collects information from the ADB peripheral devices. In association with the
ADB Tool Set, the data that is collected is available to the user. Typical data includes
key-down and key-up sequences, mouse moves, and button clicks. The firmware that
performs these operations is not documented here. See the ADB Tool Set
documentation for information about the ADB firmware. This chapter is for reference
only, providing a developer’s view of the complete ADB system.

The ADB device is an I/O port with its own microcontroller. The microcontroller
accepts commands from the 65C816, manages the internal keyboard, and acts as a
host processor for ADB peripheral devices such as the mouse, the detachable
keyboard, and other devices that follow the ADB protocol.

The ADB system has four components and three distinct software interfaces.
Figure 9-1 shows the ADB system from a hardware perspective.

ADB
65C816 a—
MiCroprocessor — GLU —{ Microcontroller (uC)

Mouse Keyboard

Figure 9-1
Apple DeskTop Bus components

The four hardware components are the 65C816, the GLU (general logic unit) chip, the
ADB microcontroller, and the components attached to the Apple DeskTop Bus
device. The application accesses the ADB components through the ADB Tool Set.
The ADB Tool Set talks to the hardware by sending commands through the GLU chip
to the microcontroller. Some of these commands require data transfer over the ADB,
and others terminate in the microcontroller.

The GLU chip is actually a set of hardware registers (sometimes called mailbox
registers) that the 65C816 uses to transmit commands and data to the microcontroller
from the 65C816 and that the microcontroller uses to pass data to the 65C816. Both the
65C816 and the microcontroller are independent processors, each running at its own
pace. They exchange data through the GLU chip.

The microcontroller translates the commands it receives into data streams that it
sends along the Apple DeskTop Bus device itself. All peripheral devices attached to
the bus listen to the data stream being transmitted. If the command is intended for a
specific peripheral device, it responds and possibly transmits data and status
information back to the microcontroller. The microcontroller, in turn, translates the
data and sends the translated data to the 65C816.

186 Chapter 9: Apple DeskTop Bus Microcontroller

There is actually one more software interface: the program running independently in
the microcontroller itself. But that is immaterial here. It is sufficient to note that this is
an intelligent peripheral device that manages communication.

The Apple IIGS Hardware Reference provides details about the hardware interface
between the ADB microcontroller and its attached peripheral devices and how the
microcontroller manages the internal and external keyboard and the mouse, the reset
sequence and the G key, key buffering (type-ahead), and so on.

The Apple IIGS Toolbox Reference provides details about the high-level commands
that allow access to the items attached to the ADB.

Although most applications do not require the information in this chapter, there are a
few exceptions:

0 applications that allow the user to temporarily change Control Panel options

O alternative input devices such as a graphics tablet (however, an application may not
need to worry about this because a device driver can be transparently hooked into
the Event Manager)

0 multiplayer or multidevice applications

If an application needs to temporarily change some Control Panel options, use the
ADB Tool Set. Note, however, that changing certain options can cause the system to
fail.)

An application should not call the ADB Tool Set to change Control Panel options l
permanently. If a permanent change in certain system characteristics, such as the
auto-repeat rate or buffer-mode options, is necessary, the application should make
the changes by changing the Battery RAM (using the Miscellaneous Tool Set). Then
the application should call the routine TOBRAMSETUP to update the system with the
new Battery RAM values.

If you are writing a user program that uses the mouse and the keyboard, you will
probably not need the information in the rest of this chapter. For that level of
information, see the Apple IIGS Toolbox Reference. If you are a hardware developer
developing a new peripheral device for the Apple DeskTop Bus, you will need the
information given here as well as the information about the bus protocol itself and
interface specifications for ADB devices. This latter information is in the Apple IIGS
Hardware Reference.

The discussion in this chapter focuses on the ADB microcontroller and its
commands. The rest of this chapter is for reference only; it shows the application
designer the kinds of commands the ADB Tool Set issues to the microcontroller. You
should not attempt to send any of these command streams to the microcontroller
yourself.

Important
Microcontroller communication is exclusively the job of the Apple lics Tool Set.

Chapter 9: Apple DeskTop Bus Microcontroller 187

ADB microcontroller commands

The microcontroller uses two types of commands: default and mode commands and
ADB commands. The default and mode commands are used by the Control Panel to
change system settings. The ADB commands are used to communicate with ADB
devices other than the detachable keyboard and the mouse (these are handled
automatically).

Caution

An application program must issue microcontroller commands only through the
ADB Tool Set. If you attempt to use these commands directly, bypassing the tool
set, you could cause a system failure. (For more information about the tool set,
see the Apple llcs Toolbox Reference.)

This section provides a detailed description of each ADB microcontroller command.
The command values are given in binary format where the most significant bit is the
leftmost bit. A percent sign (%) preceding a string of zeroes and ones indicates a
binary value. The notation xy substituted for a binary digit pair in a command byte
stands for 2 bits that select one of four possible registers. The notation abed substituted
for four binary digits in a command byte, stands for 4 bits that select one of 16 possible
device addresses. The ADB can support up to 16 different device addresses, each of
which may have four hardware registers.

Abort, $01

This command synchronizes the microcontroller with the 65C816 microprocessor
when a command error occurs. Abort is a 1-byte command with a value of %00000001.

Reset Keyboard Microcontroller, $02

This command returns the keyboard microcontroller to its power-up state. It is a 1-
byte command with a value of %00000010.

Flush Keyboard Buffer, $03

This command clears the keyboard buffer. Any keystrokes that were pending are
forgotten. It is a 1-byte command with a value of %00000011.

188 Chapter 9. Apple DeskTop Bus Microcontroller

I, Ty e,

Set Modes, $04

This command sets modes. It is a 2-byte command; the first byte value is %00000100.
For each bit set in the byte that follows the Set Modes command, the corresponding
mode bit is set.

Clear Modes, 505

This command clears modes. It is a 2-byte command; the first byte value is
%00000101. For each bit set in the byte that follows the Clear Modes command, the
corresponding mode bit is cleared.

Table 9-1 lists command bit functions.

Table 9-1
Bit functions

Bit Function

7 Resets from the ADB detachable keyboard alone when the Reset key alone is
pressed (Control not needed); works only with the detachable keyboard.

““““ -

type

G\
w)
[
17
5’,..
¢
]
b
o
c
2.
3
o)
E)
%.
W
2.
ek}
3
2
S'D-
2\
=0
5
-
=
o
(@)
N
O
(2]
{—4'4
Q
O
=
P
.
~<
Q.
Qi
g
£
<
Q.
&

lowercase characters when you press the Shift key.)
5 Reserved.
4 Buffer keyboard mode.

3 Enables 4X repeat instead of dual (2X) repeat. (When the Control key is
pressed, the repeat speed for arrows is four times the normal speed.)

2 Includes the Space bar and Delete key on dual repeat. (When the Control key is
pressed, the repeat speed for Space bar, Delete key, and arrows is doubled.)

1 Disables ADB mouse autopoll (disables the mouse).
0 Disables ADB keyboard autopoll (disables the keyboard).

ADB microcontroller commands 189

Set Configuration Bytes, $06

This command sets configuration bytes. This is a 4-byte command (%00000110) that
uses the 3 bytes following the command as follows:

1

i Byte 1

[High nibble = ADB mouse address
Low nibble ADB keyboard address

i Byte 2
f High nibble Sets character set (needed for certain languages) most significant bit if
| keypad "." swapped with ""
Low nibble Sets kevhonard layant langniage (ces Tablo 0.2)
Byte 3
High nibble Sets delay to repeat rate (3 bits)
\

0 1/4 sec

1 1/2 sec

2 3/4 sec

3 1 sec

4 No repeat

Low nibble Sets auto-repeat rate (3 bits)

¢ 40 keys/sec
1 30 keys/sec
2 24 keys/sec
3 20 keys/sec
4 15 keys/sec
5 11 keys/sec
6 8 keys/sec
7 4 keys/sec

Table 9-2 lists the keyboard language codes used for byte 2 of the Set Configuration
Bytes command.

Table 9-2
Keyboard language codes
Language Abbreviation Code Language Abbreviation Code
|
| English (U.S.) US 0 Italian IT 5
i English (UK.) UK 1 German GR 6
French FR 2 Swedish SwW 7
Danish DN 3 Dvorak Dv 8
Spanish SP 4 Canadian CN 9
190 Chapter 9: Apple DeskTop Bus Microcontroller

Sync, $07

This command performs three of the preceding commands in sequence. It sets the
mode byte (see “Set Modes, $04” and “Clear Modes, $05”) followed by the Set
Configuration Bytes (see “Set Configuration Bytes, $06”). This command is issued by
' the system after a reset operation. After receiving the command, the microcontroller
 resets itself to its internal power-up state and then resets all ADB devices. Sync is a
-~ 1-byte command with a value of %00000111.

Write Microcontroller Memory, $08

This command writes a value into the ADB microcontroller RAM. It is a 3-byte
command. The first byte has a value of %00001000. The second byte is the address to
write into. The third byte is the value to be written.

Read Microcontroller Memory, $09

This command reads a byte from the ADB microcontroller memory. The command
reads ROM or RAM locations, depending on the value of the high byte of the address
sent for reading. This is a 3-byte command. The value of the first byte is %00001001.
The second byte is the low byte of the microcontroller address. The third byte is the
high byte of the microcontroller address. If the third byte is 0, RAM is read; otherwise,
ROM is read. This command returns 1 byte.

Read Modes Byte, $0A

This command reads the modes byte (see “Set Modes, $04” or “Clear Modes, $05”).
Itis a 1-byte command with a value of %00001010. It returns 1 byte.

ADB microcontroller commands 191

Read Configuration Bytes, $0B

This command reads configuration bytes. It is a 1-byte command with a value of
%00001011. This command returns to the 65C816 (through the data latch in the GLU) a
total of 3 bytes (presented one at a time for reading by the 65C816) representing the
most recently set configuration (from the most recent Set Configuration Bytes
command). The 3 bytes are returned in the following sequence:

Byte 1

High nibble ADB mouse address
Low nibble ADB keyboard address

Byte 2

High nibble Sets character set (needed for certain languages)
Low nibble Sets keyboard layout language (see Table 9-2)

Byte 3
High nibble Sets delay to repeat rate (3 bits)

0 1/4 sec

1 1/2 sec

2 3/4 sec

3 1 sec

4 No repeat

Low nibble Sets auto-repeat rate (3 bits)

30 keys/sec
24 keys/sec
20 keys/sec
15 keys/sec
11 keys/sec

8 keys/sec

4 keys/sec

N OV RN e

Read and Clear Error Byte, $0C

This command returns the ADB error byte to the data latch in the GLU. It clears the
ADB error byte to zero. It is a 1-byte command with a value of %00001100. This
command is useful for hardware developers debugging new ADB devices.

Get Version Number, $0D

This command returns the device version number into the data latch in the GLU. It is a
1-byte command with a value of %00001101.

192 Chapter 9: Apple DeskTop Bus Microcontroller

—

Read Available Character Sets, $OE

This instruction reads available character sets. It is a 1-byte command with a value of
9%00001110. The first byte value returned specifies how many character-set identifiers
follow this first byte. Subsequent bytes returned through the data latch identify the
character sets. This command is used by the Control Panel to determine which
character sets are available in the system. It is assumed that each microcontroller is
paired with a specific megachip. However, when the Apple 1IGS is manufactured, the
factory may install one type of megachip and a different type of microcontroller. This
command allows the system to correctly match the capabilities of the megachip with
the microcontroller that is actually installed in the system.

. The order in which the character sets are returned is important. The first number
returned corresponds to character set 0 in the megachip; the next number
corresponds to character set 1.

Read Available Keyboard Layouts, $0F

This command (%600001111) returns the number of keyboard layouts available. This
command is used by the Control Panel to determine which keyboard layouts are
available in the system. Like the Read Available Character Sets command, the order in
which the numbers are returned is important. The first number returned represents
layout 0 in the microcontroller.

Reset the System, $10

This command resets the system and pulls the reset line low for 4 milliseconds. It is a
1-byte command with a value of %00010000.

Send ADB Keycode, $11

This command is used to emulate an ADB keyboard by accepting ADB keycodes from
a device and then sending them to the microcontroller to be processed as keystrokes.
This command does not process either reset-up or reset-down codes; these reset
keycodes must be processed separately. This command can be used to detect key-up
events or to emulate a keyboard with another device, such as might be used for the
handicapped. This is a 2-byte command. The first byte has a value of %00010001; the
second byte contains the keystroke to be processed. See the Apple IIGS Hardware
Reference for details about the values that correspond to specific key-down, key-up
sequences.

ADB microcontroller commands 193

Reset ADB, $40

This command pulls the ADB low for 4 milliseconds. Care must be taken with this
command because resetting an ADB keyboard clears any pending commands,
including all key-up events. This means that if this command is issued as a result of a
key being pressed, when the key is released, the key-up code will be lost and the key will
autorepeat until another key is pressed. All keys should be up before this command is
executed. This is a 1-byte command with a value of %01000000.

Receive Bytes, $48

This command is used to receive data from an ADB device. This is a 2-byte
command. The first byte value is %01001000. The second byte value is a combination
of the ADB command (see the Apple IIGS Hardware Reference) in the high nibble
and the device address in the low nibble. The microcontroller sends this ADB
command byte on the ADB and then waits for the device to return data. The
microcontroller then returns the data bytes to the system in the opposite order that
they were received from the ADB. (The issuer of this command must know about ADB
commands and the values they return.)

Transmit num Bytes, $49-$4F

This command is used to transmit data to an ADB device. This is a 3- to 9-byte
command. The first byte value is the Transmit command itself and has a value of
%01001num, where num is a set of 3 binary bits that represent a number. The value of
(num + 1) specifies how many data bytes will be transmitted as part of this command.
The second byte value is an actual ADB command. The third and subsequent bytes
(num + 1) are bytes that are transmitted directly to the devices on the ADB bus
immediately following the ADB command.

Enable Device SRQ, $50-$5F

This command enables an SRQ (service request) on the ADB device at address abed.
Itis a 1-byte command with a value of %0101abcd.

194 Chapter 9: Apple DeskTop Bus Microcontroller

Flush Device Buffer, $60-$6F

This command flushes the ADB device buffer at address abcd. It is a 1-byte command
with a value of %0110abcd.

Disable Device SRQ, $70-$7F

This command disables the SRQ on an ADB device at address abcd. It is a 1-byte
command with a value of %0111abcd.

Caution

If data Is pending when this command is executed, the pending data could be
lost. For example, if SRQ is disabled on the ADB keyboard, then all key-up codes
could be lost. See "Reset ADB, $40.”

Transmit Two Bytes, $80-$BF

This command transfers 2 bytes of data (data and status information) from a specific
device using the ADB Listen command (see the Apple IIGS Hardware Reference). 1t is
a 1-byte command with a value of %10xyabcd, where xy is the register number and

abcd is the device address.

Poll Device, $CO-$FF

This command is used to get data from a specific device. It uses the ADB Talk
command. After the Talk command is executed, the microcontroller waits for the
device to send back data or for timeout. The microcontroller waits until all data has
been received and then returns a status byte (see Table 9-3) to the system indicating
the number of bytes received and then returns the data. It returns the bytes in an order
opposite that in which they were received by the ADB. This is a 1-byte command with
avalue of %11xyabcd, where xy is the register number and abcd is the ADB device
address.

& Note: All commands (except the Sync command) that require more than a 1-byte
transfer automatically return timeout in 10 milliseconds if there is no response. The
Sync command may require 20 milliseconds to process the ADB address byte.

ADB microcontroller commands 195

Microcontroller status byte

The ADB microcontroller sends a status byte to the system when it detects one of the
conditions listed in Table 9-3. When the system receives the microcontroller status
byte, a system interrrupt occurs. The system then determines which of the conditions
caused the interrupt and jumps to the appropriate vector. The responses to these
interrupts are as follows:

E Response byte: Jumps to the response vector and processes incoming data from
the microcontroller.

m Abort/flush: Jumps to the abort vector and attempts to resynchronize the system
with the Apple DeskTop Bus; if this fails, a system error occurs.

m Desktop Manager key sequence: Jumps to the Desktop Manager vector.
m Flush buffer key sequence: Jumps to the flush buffer vector.

B SRQ: Jumps to the SRQ handler that is used to gather data from the ADB devices.
(This interrupt occurs if the device has some data that it wants to transmit. The
device generates a service request to catch the attention of the microcontroller.)

Table 9-3

Status byte returned by microcontroller

Bit Condition

7 Response byte if set; otherwise, status byte
6 Abort/flush

5 Desktop Manager key sequence pressed

Flush buffer key sequence pressed

SRQ valid

WA

2-0 If all bits are clear, then no ADB data is valid; if data is available, then the bits
indicate the number of valid bytes received minus 1—between 2 and 8 bytes
total (001 means 2 bytes ready, 011 means 4 bytes, and so on).

196 Chapter 9: Apple DeskTop Bus Microcontroller

—

Chapter 10

Mouse
Firmware

197

This chapter describes the Apple IIGS mouse firmware. You can read the mouse
position and the status of the mouse buttons using this firmware.

Important

The material in this manual regarding soft switches and hardware registers for the
Apple lles mouse firmware is provided for information only. Applications must use
the firmware calls only if they wish to be compatible with the mouse device used
in all Apple Il systems.

The Apple IIGS mouse is an intelligent device that uses the Apple DeskTop Bus (ADB)
to communicate with the Apple IIGS ADB microcontroller. This is a departure from
the AppleMouse™ card and the Apple Ilc mouse interface, each of which depends
extensively on firmware to support the mouse. The Apple 1IGS mouse firmware has a
true passive mode like the AppleMouse, but it differs from the Apple Ilc mouse, which
requires interrupts to function.

Certain devices, to operate properly, must be the sole source of interrupts within a
system because they have critical times during which they require immediate service
by the microprocessor. An interrupting communications card is a good example of a
device that has a critical service interval. If it is not serviced quickly, characters might
be lost. The true passive mode permits such devices to operate correctly. The passive
mode also prevents the 65C816 from being overburdened with interrupts from the
mouse firmware, as can occur in the Apple Ilc if the mouse is moved rapidly while an
application program is running.

The Apple IIGS mouse firmware can cause an interrupt only if all of the following
conditions are true:

O The interrupt mode is selected.

0 The mouse device is on.

O An interrupt condition has occurred.

O A vertical blanking signal (VBL) has occurred.

Unlike the Apple Ilc mouse, which interrupts whenever the mouse device is moved,
the Apple IIGS mouse device interrupts in synchronization with the VBL. This
automatically limits the total number of mouse firmware interrupts to 60 per second
cutting down on the overhead the mouse device puts on the 65C816. If an interrupt

condition (determined by the mode byte setting) occurs, it will be passed to the
65C816 only when the next VBL occurs.

]

Warning

Because the mouse firmware information is updated only once each vertical
blanking inferval, your program must be certain that at least one vertical
blanking interval has elapsed between mouse reads if it expects to obtain new
information from the mouse device.

198 Chapter 10: Mouse Firmware

Mouse position data

When the mouse is moved, data is returned as a delta move as compared to its
previous position, where the change in X or Y direction can be as much as to + 63

/ counts. The maximum value of 63 in either direction represents approximately 0.8
inch of travel.

% Note: A delta move represents a number of counts change in position as compared
to the preceding position that the mouse occupied. The Apple IIGS mouse firmware
converts this relative-position data (called a delta) to an absolute position.

The mouse device also provides the following information to the mouse firmware:
O current button 0 and button 1 data (1 if down, 0 if up)
O delta position since last read

% Note: At power up or reset, the GLU chip enters a noninterrupt state and also turns
the mouse interrupts off.

The ADB microcontroller automatically processes mouse data. The microcontroller
periodically polls the mouse to check for activity. If the mouse device is moved or its
button is pushed, 2 bytes are sent to the microcontroller. The microcontroller sends
both mouse data bytes to the GLU chip (byte Y followed by byte X; this enables the
interrupt). The 65C816 then checks the status register to verify that a mouse interrupt
has occurred, the 2 data bytes have been read, and mouse byte Y was read first. The
GLU chip clears the interrupt when the second byte has been read. To prevent
overruns, the microcontroller writes mouse data only when the registers are empty
(after byte X has been read by the system). Table 10-1 shows the 16 bits returned by the
Apple IIGS mouse firmware.

Table 10-1

Apple lles mouse data bits

Bit Function

15 Button O status

14-8 Y movement (negative = up, positive = down)
7 Button 1 status

6-0 X movement (negative = left, positive = right)

Mouse position data 199

—

Register addresses—firmware only

Table 10-2 shows the contents of the register addresses that the ADB microcontroller
uses to transmit Apple IIGS mouse data and status information to the 65C816.

Table 10-2
Apple lies mouse register addresses

Address Function

$C027 GLU status register, defined as follows:

BitO=d Must not be altered by mouse

Bit1=0 X position available (read only)
Bit1=1 Y position available (read only)
Bit2=k Must not be altered by mouse

Bit3=k Must not be altered by mouse
Bit4=d Must not be altered by mouse
Bit5=d Must not be altered by mouse

Bit6=1 Mouse interrupt enable (read or write)
Bit7=1 Mouse register full (read only)

k Used by keyboard handlers
d Used by ADB handlers

$C024 Mouse data register:

First read yields X position data and button 1 data.
Second read yields Y position data and button 0 data.

To enable mouse interrupts, set bit 6 of location $C027 to 1. Recall, however, that only
this bit and no other should be changed. This entails reading the current contents,
changing only that single bit and then writing the modified value back into the register.

If mouse interrupts are enabled, the firmware determines whether the interrupt came

from the mouse by reading bits 6 and 7 of $C027; if both bits = 1, then a mouse
interrupt is pending.

Reading mouse position data—firmware only

The following sequence of steps must be taken, in this exact order, for accurate mouse
readings to be obtained. Failure to perform the steps in this order will necessitate
some corrective action because the data will be contaminated. Contaminated data is a
condition that occurs when the X and Y values that you are trying to read are from
different VBL reads of the mouse.

O Read bit 7 of $C027.

If bit 7 = 0, then X and Y data is not yet available.
If bit 7 = 1, then data is available, but could be contaminated.

200 Chapter 10: Mouse Firmware

O Read bit 1 of $C027 only if bit 7 = 1.

If bit 1 = 0, then X and Y data are not contaminated and can be read. The first read
of $C024 returns X data and button 1 data; the second read of $C024 returns Y data
and button 0 data.

Use caution when using indexed instructions. The false read and write results of
some indexed instructions can cause X data to be lost and Y data to appear where X
data was expected.

If bit 1 = 1 and $C024 has not been read, then the data in $C024 is contaminated
and must be considered useless. If this condition occurs, perform the following
steps:

O Read $C024 one time only.
O Ignore the byte read in.

Exit the mouse read routine without updating the X, Y, or button data. This will not
harm the program; however, it guarantees that the next time the program reads mouse
positions, the positions will be accurate.

The data bytes read in contain the following information:

§ X data byte

If bit 7 = 0, then mouse button 1 is up.
If bit 7 = 1, then mouse button 1 is down.

1 Bit 0-6 delta mouse move

If bit 6 = 0, then a positive move is made up to $3F (63).
If bit 6 = 1, then a negative move in two’s complement is made up to $40 (64).

® Y data byte

If bit 7 = 0, then mouse button 0 is up.
If bit 7 = 1, then mouse button 0 is down.

® Bit 0-6 delta mouse move

If bit 6 = 0, then a positive move is made up to $3F (63).
If bit 6 = 1, then a negative move in two’s complement is made up to $40 (64).

Position clamps

When the mouse moves the cursor across the screen, the cursor is allowed to move
only within specified boundaries on the screen. These boundaries are the maximum
cursor positions.on the screen in the X and Y directions. These maximum positions
are indicated to the firmware by clamps.

Clamps are data values that specify a maximum or minimum value for some other
variable. In this instance, the mouse clamps specify the minimum and maximum
positions of the cursor on the screen.

The mouse clamps reside in RAM locations reserved for the firmware. You should
only access these locations using the Apple IIGS tools.

Mouse position data 201

Using the mouse firmware

You can use the mouse firmware by way of assembly language or BASIC. There are
several procedures and rules to follow to be effective in either language. The following
paragraphs outline these procedures and rules and give examples of the use of the
mouse firmware from each of these languages.

Firmware entry example using assembly language

To use a mouse routine from assembly language, read the location corresponding to
the routine you want to call (see Table 10-4 at the end of this chapter). The value read
is the offset of the entry point to the routine to be called.

% Note: Interrupts must be disabled on every call to the mouse firmware.

The following assembly code example correctly sets up the entry point for the mouse
firmware. Note that n is the slot number of the mouse. To use the code, you must
decide which mouse firmware command you wish to use and then duplicate the code
for each of the routines you use. For example, to use SERVEMOUSE from assembly
code, you would replace the line SETMENTRY LDA SETMOUSE with a line that reads
SERVEMENTRY LDA SERVEMOUSE, where SERVEMOUSE is $Cn13. Table 10-4
defines all of the offset locations for the built-in mouse firmware routines.

SETMOUSE EQU $Cnl2 ;Offset to SETMOUSE offset ($C412 for Apple IIGS)
SETMENTRY LDA SETMOUSE ;Get offset into code
STA TOMOUSE+2 ;Modify operand
LDX Cn ;Where Cn = C4 in Apple IIGs
LDY nO ;Where n = 40 in Apple IIGs
PHP ;Save interrupt status
SEI ;Guarantees no interrupts
LDA #$01 ;Turn mouse passive mode on
JSR TOMOUSE ;ISR to a modified JMP instruction
BCS ERROR ;C =1 if illegal-mode-entered error
PLP ;Restore interrupt status
RTS ;Exit
ERROR PLP ;Restore interrupt status
JMP ERRORMESSGE ;Exit to error routine
TOMOUSE JMP $Cn00 ;Modified operand for correct entry point; $C400 for
Apple IIGs

202 Chapter 10: Mouse Firmware

Firmware entry example using BASIC

To turn the mouse on using BASIC, execute the following code:

PRINT CHRS (4) ;"PR#4" :REM Mouse ready for output
PRINT CHR (1) :REM 1 turns the mouse on from BASIC
PRINT CHRS (4) ;"PR#0O" :REM Restore screen output

% Note: Use PRINT CHRS (4) ;"PR#3" to return to 80-column mode.

To accept outputs from BASIC, the firmware changes the output links at $36 and $37 to
point to $C407 and performs an INITMOUSE routine (resets the mouse clamps to their
default values and positions the mouse to location 0,0).

To turn the mouse off, execute the following BASIC program:

PRINT CHRS$(4) ; "PR#4"™ :REM Mouse ready for output
PRINT CHR (0) :REM 0 turns the mouse off from BASIC
PRINT CHRS$S(4) ; "PR#0"™ :REM Restore screen output

% Note: Use PRINT CHRS (4) ;"PR#3" to return to 80 columns.

To read mouse position and button statuses from BASIC, execute the following code:

PRINT CHRS$(4); "IN#4" :REM Mouse ready for input
INPUT X, Y, B :REM Input mouse position
PRINT CHRS$(4); "IN#O" :REM Return keyboard as the input device when mouse

positions have been read

When the mouse is turned on from BASIC (for data entry), the firmware changes the
input links at $38 and $39 to point to $C405. When you execute an INPUT statement
while the input link is set for mouse input, the firmware performs a READMOUSE
operation before converting the screen-hole data to decimal ASCII and places the
converted input data in the input buffer at $200.

In BASIC, the mouse runs in passive mode or a noninterrupt mode. Clamps are set
automatically to 0000-1023 ($0000-$03FF) in both the X and the Y direction, and
position data in the screen holes are set to 0.

During execution of a BASIC INPUT statement, the firmware reads the position
changes (deltas) from the ADB mouse and adds them to the absolute position in the
screen holes, clamping the positions if necessary, and converts the absolute positions
in the screen holes to ASCII format. The firmware then places that data, with the
button 0 status, in the input buffer, issues a carriage return, and returns to BASIC.

% Note: The term screen holes has absolutely nothing to do with the appearance of
anything on the actual display. Screen holes are simply unused bytes in the memory
area normally reserved for screen-display operations. Because screen holes are
unused by the display circuitry, they can be used by the firmware for other
purposes.

Using the mouse firmware 203

Reading button 1 status

Button 1 status cannot be returned to a BASIC program. This would add another input
variable to the input buffer, and an error message that states ?EXTRA IGNORED
would be displayed.

If you want to read button 1 status, you can use the BASIC Peek command to read the
screen hole that contains that data. The data returned to the input buffer is in the
following form:

s x1 x2 x3 x4 x5, s yl y2 y3 y4 y5, sb BO b5 cr
where
s = Sign of absolute position
x1l...x5 = Five ASCII characters indicating the decimal value of X
yl...y5 = Five ASCII characters indicating the decimal value of Y

sb = Minus sign (=) if key on keyboard was pressed during INPUT statement
entry and plus (+) if no key was pressed during INPUT statement entry

B0 = ASCII space character

b5 = 1 if button 0 is pressed now and was also pressed during last INPUT
statement entry

2 if button 0 is pressed now but was not pressed during last INPUT
statement entry

3 if button 0 is not pressed now but was pressed during last INPUT
statement entry

= 4 if button 0 is not pressed now and was not pressed during last INPUT
statement entry

cr = Carriage return (required as a terminator before control is passed from
firmware back to BASIC)

% Note: The BASIC program must reset the key strobe at $C010 if sb returns to a
negative state. POKE 49168,0 resets the strobe.

The mouse is resident in the Apple IIGS internal slot 4. When the mouse is in use, the
main memory screen holes for slot 4 hold X and Y absolute position data, the current
mode, button 0/1 status, and interrupt status. Eight additional bytes are used for
mouse information storage; they hold the maximum and minimum clamps for the
mouse’s absolute position.

Table 10-3 shows the mouse’s screen-hole use when Apple 1IGS firmware is used.
Figures 10-1 and 10-2 show how the bits of the button interrupt status byte and the
mode byte are assigned.

204 Chapter 10: Mouse Firmware

Table 10-3
Position and status information

Address Use

$47C Low byte of absolute X position

$4FC Low byte of absolute Y position

$57C High byte of absolute X position

$SFC High byte of absolute Y position

$67C Reserved and used by firmware

$6FC Reserved and used by firmware

$77C Button 0/1 interrupt status byte (see Figure 10-1)
$7FC Mode byte (see Figure 10-2)

Previously, button 1 was up/down (0/1)

Movement interrupt

Button 0/1 interrupt

VBL interrupt |

Currently, button 1 is up/down (0/1)

X/Y moved since last READMOUSE

Previously, button 1 was up/down (0/1)

Currently, button 1 is up/down (0/1)

Figure 10-1
Button Interrupt status byte, $77C

== Mouse off/on (0/1)

Interrupt on next VBL if mouse is moved

Interrupt on next VBL if button is pressed

Interrupt on VBL

Reserved

Reserved
Used by firmware only

Reserved

Reserved
Figure 10-2

Mode byte: $7FC Using the meuse firmwars 205

Mouse programs in BASIC

Two program examples are provided below. The first example, Mouse.Move, reads
and displays the mouse position information. The second example is called
Mouse.Draw and allows you to make simple drawings on the screen in low-resolution
graphics mode.

Mouse.Move program

10 HOME

20 PRINT "MOUSE.MOVE DEMO"

30 PRINT CHR$ (4) ;"PR#4":PRINT CHRS$ (1)
40 PRINT CHRS (4) ;"PR#0"

50 PRINT CHR$(4) ;"IN#4"

60 INPUT "";X,Y,S

70 VTAB 10:PRINT X;" ny" ns" "
80 IF S > 0 THEN 60

90 PRINT CHRS$ (4);"™IN#0"

100 PRINT CHRS (4) ;"PR#4":PRINT CHRS (0)
110 PRINT CHRS (4) ; "PR#0™

Comments

Line 10 clears the screen to black.

Line 20 prints a heading message.

Line 30 starts up the mouse’s internal program.,

Line 40 establishes that subsequent PRINT commands will send information to the monitor
screen.

Line 50 establishes that the subsequent INPUT command will read the mouse.

Line 60 transfers mouse position and button status readings to the numeric variables X, Y,
and S.

Line 70 displays the numeric variables X, Y, and S on the 10th line of the monitor screen.
Line 80 returns the program for more mouse data if no keyboard key has been pressed. If a
key has been pressed, the program drops to line 90.

Line 90 reestablishes your keyboard as the input device.

Line 100 resets the mouse position data to zero.

Line 110 reestablishes the monitor screen as the output device.

Line 120 ends the program.

206 Chapter 10: Mouse Firmware

Mouse.Draw program

REM MOUSE.DRAW Uses mouse to draw lo-res graphics
GOSUB 1000: REM TURN ON THE MOUSE
PRINT CHRS$ (4);"IN#4"

INPUT "";X,Y,S:REM READ MOUSE DATA
IF S=1 THEN 100:REM CLEAR THE SCREEN
IF S<0 THEN 300;REM TIME TO QUIT?
REM SCALE MOUSE POSITION
X=INT(X/25.575)

Y=INT(Y/25.575)

PLOT X,Y

GOTO 120

REM CHECK IF TIME TO QUIT

PRINT CHRS (4);"IN#0"

VTAB 22:PRINT "PRESS RETURN TO CONT OR ESC TO QUIT"
VTAB 22:HTAB 39:GET A$:POKE -16368,0
IF AS$=CHRS$(13) THEN HOME:GOTO 110

IF A$<>CHRS$(27) THEN 330

REM CLEAR SCREEN AND ZERO MOUSE
TEXT : HOME

PRINT CHRS$ (4);"PR#4":PRINT CHRS$ (1)
PRINT CHRS$ (4);"PR#0"

END

REM Clear the screen and initialize the mouse
HOME : GR

COLOR = 15

PRINT CHRS$ (4) ;"PR#4":PRINT CHRS (1)

PRINT CHRS (4) ; "PR#0"

RETURN

Mouse programs in BASIC

207

Comments

Line 10 reminds you what the program does.

Line 100 calls the subroutine at lines 1000 through 1050.

Line 110 establishes that the subsequent INPUT command will read the mouse.

Line 120 transfers mouse position and button status data to the numeric variables X, Y, and S.
Line 130 reinitializes the mouse if its button is pressed.

Line 140 sends the program to its exit routine if a key on the Apple keyboard has been
pressed.

Line 150 reminds you what the next two lines do.

Lines 160 and 170 convert the range of mouse position numbers (0 to 1023) to the range of
low-resolution graphics coordinates (0 to 40).

Line 180 plots a point on the monitor screen.

Line 190 sends the program back for more mouse data.

Line 300 reminds you what lines 310 through 400 do.

Line 310 tells the computer to accept input from its keyboard.

Line 320 prints prompting instructions on line 22 of the screen.

Line 330 fetches your answer to the prompt and changes the button status number back to
positive (it becomes negative whenever you press a key on the Apple keyboard).

Line 340 sends the program back to reporting mouse data if you pressed Return.

Line 350 fetches another answer if you press any key except Esc.

Line 360 reminds you what happens next.

Line 370 cancels graphics mode and clears the screen.

Line 380 resets the mouse position data to zero.

Line 390 reestablishes the monitor screen as the output device.

Line 400 ends the program.

Line 1000 reminds you what the following subroutine does.

Line 1010 clears the monitor screen and sets up Apple's low-resolution graphics mode.
Line 1020 establishes that the cursor will be white.

Line 1030 starts up the mouse’s internal program.

Line 1040 establishes that subsequent PRINT commands will send information to the monitor
screen.

Line 1050 returns to the main program (line 100).

208 Chapter 10: Mouse Firmware

Summary of mouse firmware calls

The firmware calls to enter mouse routines are listed in Table 10-4. These calls
conform to Pascal 1.1 protocol for peripheral cards.

Table 10-4
Mouse firmware calls

Location Routine Definition

Pascal firmware entry points for the mouse

$C40D PINIT Pascal INIT device (not implemented)
$C40E PREAD Pascal READ character (not implemented)
$C40F PWRITE Pascal WRITE character (not implemented)
$C410 PSTATUS Pascal get device status (not implemented)
$C411 = $00 Indicates that more routines follow

Routines implemented on Apple lIGs, Apple Il, and AppleMouse card

$C412 SETMOUSE Sets mouse mode

$C413 SERVEMOUSE Services mouse interrupt

$C414 READMOUSE Reads mouse position

$C415 CLEARMOUSE Clears mouse position to 0 (for delta mode)

$C416 POSMOUSE Sets mouse position to user-defined position

$C417 CLAMPMOUSE Sets mouse bounds in a window

$C418 HOMEMOUSE Sets mouse to upper-left corner of clamping window
$C419 INITMOUSE Resets mouse clamps to default values; sets mouse

position to 0,0

Entry points compatible with AppleMouse card; they do nothing in Apple liGs

$C41A DIAGMOUSE Dummy routine; clears ¢ and performs an RTS
$C41B COBYRIGHT Dummy rouline; clears ¢ and performs an RTS
$C41C TIMEDATA Dummy routine; clears ¢ and performs an RTS
$C41D SETVBLCNTS Dummy routine; clears ¢ and performs an RTS
$C41E OPTMOUSE Dummy routine; clears ¢ and performs an RTS
$C41F STARTTIMER Dummy routine; clears ¢ and performs an RTS

Other significant locations

$C400 BINITENTRY Initial entry point when coming from BASIC

$C405 BASICINPUT BASIC input entry point (opcode SEC) Pascal ID
byte

$C407 BASICOUTPUT BASIC output entry point (opcode CLC) Pascal ID
byte

$C408 = $01 Pascal generic signature byte

$C40C = $20 Apple technical-support ID byte

$C4FB = $D6 Additional ID byte

Summary of mouse firmware calls 209

Pascal calls

Pascal recognizes the mouse as a valid device; however, Pascal is not supported by the
firmware. A Pascal driver for the mouse is available from Apple to interface programs
with the mouse. Pascal calls PInit, PRead, PWrite, and PStatus return with the X
register set to 3 (Pascal illegal operation error) and the carry flag set to 1. Following is a
list of Pascal firmware calls.

Plnit

Function Not implemented (just an entry point in case user calls it by mistake).
Input All registers and status bits.

Output X = $03 (error 3 = bad mode: illegal operation). ¢ = 1 (always).

Screen holes: unchanged.

PRead

Function Not implemented (just an entry point in case user calls it by mistake).
Input All registers and status bits.

Output X = $03 (error 3 = bad mode: illegal operation). ¢ = 1 (always).

Screen holes: unchanged.

PWrite

Function Not implemented (just an entry point in case user calls it by mistake).
Input All registers and status bits.

Output X = $03 (error 3 = bad mode: illegal operation). ¢ = 1 (always).

Screen holes: unchanged.

PStatus
Function Not implemented (just an entry point in case user calls it by mistake).
Input All registers and status Bits.

Output X = $03 (error 3 = Bad mode: illegal operation). ¢ = 1 (always).
Screen holes: unchanged.

210 Chapter 10: Mouse Firmware

A

~ Assembly-language calls
This section describes the assembly-language firmware calls. When you use the mouse
from assembly language, you must keep several items in mind.
O For built-in firmware, n = mouse slot number 4.
O The following bits and registers are not changed by mouse firmware:
0Oem,I x
O direct register
0O data bank register
O program bank register

0 Mouse screen holes should not be changed by an application program, with one
exception: During execution of the POSMOUSE function, new mouse coordinates
are written by the application program directly into the screen holes. No other
mouse screen hole can be changed by an application program without adversely
affecting the mouse.

0 The 65C816 assumes that the mouse firmware is entered in the following machine
State:

65C816 is in emulation mode.
Direct register = $0000.
Data bank register = $00.

System speed = fast or slow (does not matter which).

O O o o

O Text page 1 shadowing is on to allow access to screen-hole data.

Here are the actual firmware routines. Notice that each is specified by its offset entry
address. Recall that the offset entry point is a value at a given location (for example,
$C412) to which you add the value of the main entry point (for example, $C400) to
obtain the actual address to which the processor must jump to execute the routine.

SETMOUSE, $C412
Function Sets mouse operation mode.

Input A = mode ($00 to $OF are the only valid modes).
X = Cn for standard interface (Apple 1IGS mouse not used).
Y = n0 for standard interface (Apple I1IGS mouse not used).

Output A = mode if illegal mode entered; otherwise, A is scrambled.
X, Y, V, N, Z = scrambled.
¢ = 0 if legal mode entered (mode is <= $0F).
¢ = 1 if illegal mode entered (mode is > $0F).
Screen holes: Only mode bytes are updated.

Assembly-language calls 211

SERVEMOUSE, $C413

Function Tests for interrupt from mouse and resets mouse’s interrupt line.

Input X = Cn for standard interface (Apple IIGS mouse not used).
Y = n0 for standard interface (Apple IIGS mouse not used).

Output X, Y, V, N, Z = scrambled.
¢ = 0 if mouse interrupt occurred.
¢ = 1 if mouse interrupt did not occur.
Screen holes: Interrupt status bits updated to show current status.

READMOUSE, $C414

Function Reads delta (X/Y) positions, updates absolute X/Y positions, and reads
button statuses from ADB mouse.

Input A = not affected.
X = Cn for standard interface (Apple IIGS mouse not used).
Y = nO for standard interface (Apple IIGS mouse not used).

Output A X Y, V, N, Z=scrambled.
¢ = 0 (always).
Screen holes: SLO, XHI, YLO, YHI buttons and movement status bits
updated; interrupt status bits are cleared.

CLEARMOVUSE, $C415

Function Resets buttons, movement, and interrupt status to 0, X, and Y. (This
mode is intended for delta mouse positioning instead of the normal
absolute positioning.)

Input A = not affected.
X = Cn for standard interface (Apple IIGS mouse not used).
Y = nO for standard interface (Apple 1IGS mouse not used).

Output A X Y, V, N, Z=scrambled.
¢ = 0 (always).
Screen holes: SLO, XHI, YLO, YHI buttons and movement status bits
updated; interrupt status bits are cleared.

212 Chapter 10: Mouse Firmware

B s o O I AT I e

POSMOUSE, $C416

Function Allows user to change current mouse position.

Input User places new absolute X/Y positions cirectly in appropriate screen
holes.
X = Cn for standard interface (Apple 1IGS mouse not used).
Y = n0 for standard interface (Apple IIGS mouse not used).

Output A, X, Y, V, N, Z = scrambled.
¢ = 0 (always).
Screen holes: User changed X and Y absolute positions only; bytes
changed.

CLAMPMOUSE, $C417

Function Sets up clamping window for mouse use. Power-up default values are 0
to 1023 ($0000 to $O3FF).

Input A = 0 if entering X clamps.
A = 1if entering Y clamps.

Clamps are entered in slot 0 screen holes by the user as follows:

$478 = low byte of low clamp.
$4F8 = low byte of high clamp.
$578 = high byte of low clamp.
$5F8 = high byte of high clamp.

X = Cn for standard interface (Apple IIGS mouse not used).
Y = n0 for standard interface (Apple 1IGS mouse not used).

Output A, X Y, V, N, Z = scrambled.
¢ = 0 (always).
Screen holes: X/Y absolute position is set to upper-left corner of
clamping window. Clamping RAM values in bank $E0 are updated.

% Note: The Apple I1IGS mouse firmware performs an automatic HOMEMOUSE
operation after a CLAMPMOUSE. HOMEMOUSE execution is required because the
delta information is being fed to the firmware instead of +1’s, as in the case of the
Apple II mouse and the 6805 AppleMouse microprocessor card. The delta
information from the Apple 1IGS ADB mouse alters the absolute position of the
screen pointer, using clamping techniques not used by the other two mouse
devices.

Assembly-language calls

213

HOMEMOUSE, $C418

Function Sets X/Y absolute position to upper-left corner of clamping window.

Input A = not affected.
X = Cn for standard interface (Apple IIGS mouse not used).
Y = n0 for standard interface (Apple IIGS mouse not used).

Output A, X, Y, V, N, Z = scrambled.
¢ = 0 (always)
Screen holes: User changed X and Y absolute positions only; bytes
changed.

INITMOUSE, $C419

Function Sets screen holes to default values and sets clamping window to default
value of 0000 to 1023 ($0000, $03FF) in both the X and Y directions;
resets GLU mouse interrupt capabilities.

Input A = not affected.
X = Cn for standard interface (Apple 1IGS mouse not used).
Y = n0 for standard interface (Apple IIGS mouse not used).

Output A X, Y, V, N, Z = scrambled.
¢ = 0 (always)
Screen holes: X/Y positions, button statuses, and interrupt status are
reset.

% Note: Button and movement statuses are valid only after a READMOUSE operation.
Interrupt status bits are valid only after a SERVEMOUSE operation. Interrupt status
bits are reset after READMOUSE. Read and use or read and save the appropriate
mouse screen-hole data before enabling or reenabling 65C816 interrupts.

214 Chapter 10: Mouse Firmware

—

Appendix A

Roadmap to
the Apple lics
Technical Manuals

The Apple IIGS personal computer has many advanced features, making it more
complex than earlier models of the Apple II. To describe it fully, Apple has produced
a suite of technical manuals. Depending on the way you intend to use the Apple IIGS,
you may need to refer to a select few of the manuals, or you may need to refer to most
of them.

The technical manuals are listed in Table A-1. Figure A-1 is a diagram showing the
relationships among the different manuals.

215

Table A-1
Apple lles technical manuals

Title

Subject

Technical Introduction to the Apple IIGS
Apple IIGS Hardware Reference
Apple IIGS Firmware Reference

Programmer’s Introduction
to the Apple IIGS

Apple IIGS Toolbox Reference,
Volume 1

Apple IIGS Toolbox Reference,
Volume 2

Apple IIGS Programmer’s Workshop
Reference

Apple IIGS Programmer’s Workshop
Assembler Reference

Apple IIGS Programmer’s Workshop

C Reference
ProDOS 8 Technical Reference Manual
Apple IIGS ProDOS 16 Reference

Human Interface Guidelines:
The Apple Desktop Interface

Apple Numerics Manual

What the Apple IIGS is
Machine internals—hardware
Machine internals—firmware

Concepts and a sample program
How the tools work and some toolbox
specifications

More toolbox specifications

The development environment

Using the APW assembler

Using C on the Apple IIGS

Standard Apple II operating system

Apple IIGS operating system and System
Loader

Guidelines for the desktop interface

Numerics for all Apple computers

216 Appendix A: Roadmap to the Apple lies Technical Manuals

—

Figure A-1
Roadmap to the technical manuals

To start finding out
about the Apple IIGS

To learn how
the Apple IIGS works

To start learning
to program the Apple lIGS

To use the toolbox

To use the development
environment

To operate on files

Touse C

To use
assembly language

Appendix A: Roadmap to the Apple lics Technical Manuals 217

The introductory manuals

These books are introductory manuals for developers, computer enthusiasts, and
other Apple IIGS owners who need technical information. As introductory manuals,
their purpose is to help the technical reader understand the features of the Apple 1IGS,
particularly the features that are different from other Apple computers. Having read
the introductory manuals, the reader will refer to specific reference manuals for details
about a particular aspect of the Apple IIGS.

The technical introduction

The Technical Introduction to the Apple IIGS is the first book in the suite of technical
manuals about the Apple IIGS. It describes all aspects of the Apple IIGS, including its
features and general design, the program environments, the toolbox, and the
development environment.

Where the Apple IIGS Owner’s Guide is an introduction from the point of view of the
user, the technical introduction manual describes the Apple IIGS from the point of
view of the program. In other words, it describes the things the programmer has to
consider while designing a program, such as the operating features the program uses
and the environment in which the program runs.

The programmer’s introduction

When you start writing Apple IIGS programs, the Programmer’s Introduction to the
Apple IIGS provides the concepts and guidelines you need. It is not a complete course
in programming, only a starting point for programmers writing applications that use
the Apple desktop interface (with windows, menus, and the mouse). It introduces the
routines in the Apple IIGS Toolbox and the program environment they run under. It
includes a sample event-driven program that demonstrates how a program uses the
toolbox and the operating system. (An event-driven program waits in a loop until it
detects an event such as a click of the mouse button.)

218 A_ppendix A: Rocqup to the A_pple lles Technical Manuals

The machine reference manuals

There are two reference manuals for the machine itself: the Apple IIGS Hardware
Reference and the Apple IIGS Firmware Reference. These books contain detailed
specifications for people who want to know exactly what's inside the machine.

The hardware reference manual

The Apple IIGS Hardware Reference is required reading for hardware developers,
and it will also be of interest to anyone else who wants to know how the machine works.
Information for developers includes the mechanical and electrical specifications of all
connectors, both internal and external. Information of general interest includes
descriptions of the internal hardware, which provide a better understanding of the
machine’s features.

The firmware reference manual

The Apple IIGS Firmware Reference describes the programs and subroutines that are
stored in the machine’s read-only memory (ROM), with two significant exceptions:
Applesoft BASIC and the toolbox, which have their own manuals. The firmware
reference manual includes information about interrupt routines and low-level I/O
subroutines for the serial ports, the disk port, and the Apple DeskTop Bus interface,
which controls the keyboard and the mouse. The manual also describes the Monitor, a
low-level programming and debugging aid for assembly-language programs.

The toolbox reference manuals

Like the Macintosh, the Apple IIGS has a built-in toolbox. The Apple IIGS Toolbox
Reference, Volume 1, introduces concepts and terminology and tells how to use some
of the tools. The Apple IIGS Toolbox Reference, Volume 2, contains information
about the rest of the tools and also tells how to write and install your own tool set..

Of course, you don’t have to use the toolbox at all. If you only want to write simple
programs that don’t use the mouse, or windows, or menus, or other parts of the
desktop user interface, then you can get along without the toolbox. However, if you are
developing an application that uses the desktop interface or if you want to use the Super
Hi-Res graphics display, you'll find the toolbox to be indispensable.

In applications that use the desktop user interface, commands appear as options in
pull-down menus, and material being worked on appears in rectangular areas of the
screen called windows. The user selects commands or other material by using the
mouse to move a pointer around on the screen.

The toolbox reference manuals 219

The programmer’s workshop reference manual

The Apple 1IGS Programmer’s Workshop (APW) is the development environment for
the Apple IIGS computer. APW is a set of programs that enables developers to create
and debug application programs on the Apple IIGS. The Apple IIGS Programmer's
Workshop Reference includes information about the APW Shell, Editor, Linker,
Debugger, and utility programs; these are the parts of the workshop that all developers
need, regardless of which programming language they use.

The APW reference manual describes the way you use the workshop to create an
application and includes examples and illustrations to show how this is done. In
addition, this manual documents the APW Shell to provide the information necessary
to write an APW utility or a language compiler for the workshop.

Included in the APW reference manual are complete descriptions of two standard
Apple 1IGS file formats: the text file format and the object module format. The text file
format is used for all files written or read as “standard ASCII files” by Apple 11GS
programs running under ProDOS 16. The object module format is used for the ouptut
of all APW compilers and for all files loadable by the Apple IIGS System Loader.

The programming-language reference manuals

Apple currently provides a 65C816 assembler and a C compiler. Other compilers can
be used with the workshop, provided that they follow the standards defined in the
Apple IIGS Programmer’s Workshop Reference.

There is a separate reference manual for each programming language on the
Apple IIGS. Each manual includes the specifications of the language and of the
Apple IIGS libraries for the language, and describes how to use the assembler or
compiler for that language. The manuals for the languages Apple provides are the
Apple IIGS Programmer’s Workshop Assembler Reference and the Apple IIGS
Programmer’s Workshop C Reference.

The Apple IIGS Programmer’s Workshop Reference and the two programming-
language manuals are available through the Apple Programmer’s and Developer’s
Association.

220 Appendix A: Roadmap to the Apple lics Technical Manuals

The operating-system reference manuals

There are two operating systems that run on the Apple IIGS: ProDOS 16 and

ProDOS 8. Each operating system is described in its own manual: ProDOS 8 Technical
Reference Manual and Apple IIGS ProDOS 16 Reference. ProDOS 16 uses the full
power of the Apple IIGS. The ProDOS 16 manual describes its features and includes
information about the System Loader, which works closely with ProDOS 16. If you are
writing programs for the Apple IIGS, whether as an application programmer or a
system programmer, you are almost certain to need the ProDOS 16 reference manual.

ProDOS 8, previously just called ProDOS, is the standard operating system for most
Apple 1I computers with 8-bit CPUs (Apple Ilc, Ile, and 64K II Plus). It also runs on the
Apple 1IGS. As a developer of Apple 1IGS programs, you need the ProDOS 8 Technical
Reference Manual only if you are developing programs to run on 8-bit Apple II's as
well as on the Apple IIGS.

The all-Apple manuals

In addition to the Apple IIGS manuals mentioned above, there are two manuals that
apply to all Apple computers: Human Interface Guidelines: The Apple Desktop
Interface and Apple Numerics Manual. If you develop programs for any Apple
computer, you should know about those manuals.

The Human Interface Guidelines manual describes Apple’s standards for the desktop
interface of any program that runs on an Apple computer. If you are writing a
commercial application for the Apple IIGS, you should be fully familiar with the
contents of this manual.

The Apple Numerics Manual is the reference for the Standard Apple Numeric
Environment (SANE™), a full implementation of the IEEE Standard for Binary
Floating-Point Arithmetic (IEEE Std 754-1985). The functions of the Apple IIGS SANE
tool set match those of the Macintosh SANE package and of the 6502 assembly-
language SANE software. If your application requires accurate or robust arithmetic,
you'll probably want to use the SANE routines in the Apple IIGS. The Apple IIGS
Toolbox Reference tells how to use the SANE routines in your programs. The Apple
Numerics Manual is the comprehensive reference for the SANE numerics routines.

The all-Apple manuals 221

Appendix B

Firmware ID Bytes

The firmware ID bytes are used to identify the particular hardware system on which you
are currently working. Table B-1 lists the locations from which you can read ID
information. Each system maintains three separate ID byte locations, as indicated in
the table. If all three ID bytes match for a given system type, you will know that your
software is running on that particular system.

Table B-1
ID information locations

Main ID Sub ID1 Sub ID2

System ($FBB3) (FBCO) ($FBBF)
Apple 11 $38 $60 $2F
Apple 1I Plus $EA $EA $EA
Apple Ile $06 $EA $C1
Apple Ile Plus $06 $EO0 $00
Apple 1IGS $06 $EO $00
Apple IIc $06 $00 $FF
Apple IIc Plus ~ $06 $00 $00

To distinguish the Apple IIGS from an Apple Ile Plus (the ID bytes are identical), run
the following short routine with the ROM enabled in the language card.

SEC ;¢ =1 as a starting point
JSR S$FEIF ;RTS for Apple II computers
;prior to the Apple IIGs
BCS ITSAPPLEIIE /If ¢ = 1, then the system is an old Apple II

BCC ITSApplellGs ;If ¢ = 0, then the system is a Apple IIGS or later and the
registers are returned with the information in Table B-2.

222

—

Table B-2
Register bit information

Register Bit Information

Reserved

1, if system has a memory expansion slot
1, if system has an IWM port

1, if system has a built-in clock

1, if system has Apple DeskTop Bus

1, if system has SCC

1, if system has external slots

1, if system has internal ports

Y 15-8 Machine ID:
00 Apple IIGS
1-FF Future machines

A

T
~

O = NW AWV R

X 7-0 ROM version number

The Y register contains the machine ID; the X register contains the ROM version
number.

& Note: If the ID call was made in emulation mode, only the low 8 bits of X, A, and Y
are returned correctly; however, the ¢ bit is accurate. If the call was made in native
mode, the c bit as well as register information is accurate as shown in Table B-2 and
is returned in full 16-bit native mode. The c bit is the carry bit in the processor status
register. If the value returned in Y is $00, the value in A should be considered to be
$7F.

Appendix B: Firmware ID Bytes 223

Appendix C

Firmware Entry Points
in Bank $00

Apple Computer, Inc. will maintain the entry points described within this document
in any future Apple IIGS or Apple II-compatible machine that Apple produces. No
other entry points will be maintained. Use of the entry points in this document will
ensure compatibility with Apple IIGS and future Apple II-compatible machines. Note
that these entry points are specific to Apple IIGS and Apple IIGS—compatible machines
and do not necessarily apply to Apple Ile or Apple Ilc machines.

As an alternative to using these entry points, note that you can also use the
Miscellaneous Tool Set FWENTRY firmware function.

For all of the routines defined in this chapter, the following definitions apply:
O A represents the lower 8 bits of the accumulator.

B represents the upper 8 bits of the accumulator.

X and Y represent 8-bit index registers.

DBR represents the data bank register.

K represents the program bank register.

P represents the processor status register.

S represents the processor stack register.

D represents the direct-page register.

e represents the emulation-mode bit.

¢ represents the carry flag.

0O 0 0O 0O o oogaoao o

? represents a value that is undefined.

224

Warning

For all of the routines In this appendix, the following environment variables must
be set with the values shown here:

0 The e bit must be set to 1.

0 The decimal mode must be set to 0.
0 K must be set to $00.

0 D must be set to $0000.

0 DBR must be set to $00.

Following are descriptions of the firmware routines supported as entry points in
current and future models of the Apple II family, starting with the Apple IIGS.
$F800 PLOT Plot on the low-resolution screen only.

PLOT puts a single block of the color value set by SETCOL on the
low-resolution display screen.

Input A = Block’s vertical position (0-$2F)
X =7
Y = Block’s horizontal position (0-$27)

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P

$FBOE PLOT1 Modify block on the low-resolution screen only.

PLOT puts a single block of the color value set by SETCOL on the
low-resolution display screen. The block is plotted at current settings of
GBASL/GBASH with current COLOR and MASK settings.

Input A=7?
X=7?
Y = Block’s horizontal position (0-$27)

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P

Appendix C: Firmware Entry Points in Bank $00 225

T T TTTTTITIIIEE I T~

$F819 HLINE Draw a horizontal line of blocks on low-resolution screen
only.

HLINE draws a horizontal line of blocks of the color set by SETCOL on the
low-resolution graphics display.

Input A = Block’s vertical position (0-$2F)
X=7
Y = Block’s leftmost horizontal position (0-$27)

H2 = (Address = $2C); block’s rightmost horizontal position
(0-$27)

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P
$F828 VLINE Draw a vertical line of blocks on the low-resolution screen
only.

VLINE draws a vertical line of blocks of the color set by SETCOL on the
low-resolution display.

Input A = Block’s top vertical position (0-$2F)
X=7?
Y = Block’s horizontal position (0-$27)

V2 = (Address = $2D); block’s bottom vertical position (0-$2F)
Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

$F832 CLRSCR Clear the low-resolution screen only.

CLRSCR clears the low-resolution graphics display to black. If CLRSCR is
called while the video display is in text mode, it fills the screen with inverse
at sign (@) characters.

Input A=7?
X=7
. Y=?

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

226 Appendix C: Firmware Entry Points in Bank $00

$F836

$F847

$F85F

CLRTOP Clear the top 40 lines of the low-resolution screen only.

CLRTOP clears the top 40 lines of the low-resolution graphics display (in
mixed mode, clears the graphics portion of the screen to black).

Input A=7?
X=2
Y=?

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

GBASCALC Calculate base address for low-resolution graphics only.

GBASCALC calculates the base address of the line on which a particular
pixel is to be plotted.

Input A = Vertical line to find address for (0-$2F)
X =7
Y=2

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = GBASL

NXTCOL Increment color by 3.

NXTCOL adds 3 to the current color (set by SETCOL) used for low-resolution
graphics.

Input =

]
ACEESCREN)

A
X
Y

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = New color in high or low nibble

Appendix C: Firmware Entry Points in Bank $00 227

$F864

$F871

228

SETCOL Set low-resolution graphics color.

SETCOL sets the color used for plotting in low-resolution graphics. The
colors are as follows:

$0 = Black

$1 = Deep red
$2 = Dark blue
$3 = Purple

$4 = Dark green
$5 = Dark gray

$6 = Medium blue
$7 = Light blue

$8 = Brown

$9 = Orange

$A = Light gray

$B = Pink

$C = Light green

$D = Yellow

$E = Aquamarine

$F = White

Input A = Low nibble = new color to use; high nibble doesn’t matter
X=7?
Y =7

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = New color in high or low nibble

SCRN Read the low-resolution graphics screen only.

SCRN returns the color value of a single block on the low-resolution graphics
display. Call it with the vertical position of the block in the accumulator and
horizontal position in the Y register.

Input A = Vertical line to find addr for (0-$2F)
X =7
Y="?

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = Color of block specified in low nibble;
high nibble = 0

Appendix C: Firmware Entry Points in Bank $00

$F88C INSDS1.2 Perform LDA (PCL,X); then fall into INSDS2.

INSDS1.2 gets the opcode to determine the instruction length of with an LDA
(PCL,X) and falls into INSDS2.

Input A=7?
X = Offset into buffer at pointer PCL/PCH
Y=2?

PCH = (Address $3B) high byte of buffer address to get opcode
from in bank $00

PCL = (Address = $3A) low byte of buffer address to get opcode
from in bank $00

Output Unchanged = DBR/K/D/e
Scrambled = A/X/B/P
Special = Y = $00
LENGTH (address = $2F); contains instruction length 1
of 6502 instructions or = $00 if not a 6502 opcode

$F88E INSDS2 Calculate length of 6502 instruction.

INSDS2 determines the length 1 of the 6502 instruction denoted by the
opcode appearing in the A register.

INSDS2 returns correct instruction length 1 of 6502 opcodes only. All non-
6502 opcodes return a length of $00. For compatibility reasons, the BRK
opcode returns a length of $00, not $01 as one would expect it to.

Input A = Opcode for which length is to be determined
X =7
Y="?

Output Unchanged = DBR/K/D/e
Scrambled = A/X/B/P
Special = Y = $00
LENGTH (address = $2F); contains instruction length 1
of 6502 instructions or = $00 if not a 6502 opcode

Appendix C: Firmware Entry Pointfs in Bank $00 229

$F890 GET816LEN Calculate length of 65C816 instruction.

GET816LEN determines the length of the 65816 instruction denoted by the
opcode appearing in the A register. The BRK opcode returns a length of $01
as one would expect it to.

Input A = Opcode for which length is to be determined
X=7?
Y =7
Output Unchanged = DBR/K/D/e
Scrambled = A/X/B/P
Special = Y = $00
LENGTH (address = $2F); contains instruction length 1
of 65C816 instructions

$F8D0 INSTDSP Display disassembled instruction.

INSTDSP disassembles and displays one instruction pointed to by the
program counter PCL/PCH (addresses $3A/$3B) in bank $00.

Input A=7?
X =7
Y =7

Output Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P
$F940 PRNTYX Print contents of Y and X registers in hex format.

PRNTYX prints the contents of the Y and X registers as four-digit
hexadecimal values.

Input A=?
; X = Low hex byte to print
g Y = High hex byte to print

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P
$TF941 PRNTAX Print contents of A and X registers in hex format.

PRNTYX prints the contents of the A and X registers as four-digit
hexadecimal values.

Input A = High hex byte to print
X = Low hex byte to print
Y=7?

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P

230 Appendix C: Firmware Entry Points in Bank $00

—

$F944 PRNTX Print contents of X register in hex format.

PRNTYX prints the contents of the X register as a two-digit hexadecimal
value.

Input A=7?
X = Hex byte to print
Y=2?

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P

$F948 PRBLNK Print 3 spaces.

PRBLNK outputs 3 blank spaces to the standard output device.

Input A=7?
X=7
Y=7?

Output Unchanged = Y/DBR/K/D/e
Scrambled = B/P
Special = X = $00
A = $A0 (space ASCII code)

$F94A PRBL2 Print X number of blank spaces.

PRBL2 outputs from 1 to 256 blanks to the standard output device.

Input A=?
X = Number of blanks to print ($00 = 256 blanks)
Y =2

Output Unchanged = Y/DBR/K/D/e
Scrambled = B/P
Special = X = $00
\ A = $A0 (space ASCII code)

Appendix C: Firmware Entry Points in Bank SO0 231

$F953 PCADJ Adjust Monitor program counter.

PCAD]J increments the program counter by 1, 2, 3, or 4, depending on the
LENGTH (address $2F) byte; 0 = add 1 byte, 1 = add 2 bytes, 2 = add 3 bytes,
3 = add 4 bytes.

Note: PCL/PCH (addresses $3A/$3B) are not changed by this call. The
A/Y registers contained the new program counter at the end of this call.

Input A=7?
X=7?
Y=?
PCL = (Address $3A) program counter low byte
PCH = (Address $3B) program counter high byte
LENGTH = (Address $2F) length 1 to add to program counter

Output Unchanged = DBR/K/D/e
Scrambled = X/B/P
Special = A = New PCL
Y = New PCH
PCL/PCH not changed

$F962 TEXT2COPY Enable or Disable text Page 2 software-shadowing.

TEXT2COPY toggles the text Page 2 software-shadowing function on and
off. The first access to TEXT2COPY enables shadowing, and the next access
disables shadowing. When TEXT2COPY is enabled, a heartbeat task is
enabled that, on every VBL, copies the information from bank $00
locations $0400-$07FF to bank $EO locations $0400-$07FF. It then enables
VBL interrupts. VBL interrupts remain on until Control-Reset is pressed or
until the system is restarted. TEXT2COPY can disable the copy function,
but cannot disable VBL interrupts once they are enabled.

Input

< >
I

<
o
N v

Output Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P

232 Appendix C: Firmware Entry Points in Bank $00

—

$FA40

$FA4C

$FA59

OLDIRQ Go to emulation-mode interrupt-handling routines.

Jumps to the interrupt-handling routines that handle emulation-mode BRKs
and IRQs. All registers are restored after the application performs an RTI at
the end of its installed interrupt routines. Location $45 is not destroyed as in
the Apple II, Apple II Plus, and original Apple Ile computers.

Input A=7?
X=7
Y=?

Output Unchanged = A/X/Y/DBR/P/B/K/D/e
Scrambled = Nothing

BREAK Old 6502 break handler.

BREAK saves the 6502 registers and the program counter and then jumps
indirectly through the user hooks at $03F0/$03F1. Note that this call affects
the 6502 registers, not the 65C816 registers. This entry point is obsolete
except in very rare circumstances.

Input A = Assumes A was stored at address $45
X=7?
y=2?

Output Unchanged = DBR/K/D/e
Special = ASH (address $45) = A value
XREG (address $46) = X value
YREG (address $47) = Y value
STATUS (address $48) = P value
SPNT (address $49) = S stack
Pointer value

OLDBRK New 65C816 break handler.

OLDBRK prints the address of the BRK instruction, disassembles the BRK
instruction, and prints the contents of the 65C816 registers and memory
configuration at the time the BRK instruction was executed.

Input All 65C816 registers and memory configuration saved by
interrupt handler

Output Returns to Monitor after displaying information

Appendix C: Firmware Entry Points in Bank $00 233

$FA62

$FAAG

$FABA

234

RESET Hardware reset handler.

RESET sets up all necessary warm-start parameters for the Apple IIGS. It is
called by the 65C816 reset vector stored in ROM in locations $FFFC/$FFFD.
If normal warm start occurs, it then exits through user vectors at
$03F2/$03F3. If cold start occurs, it then exits by attempting to start a startup
device such as a disk drive or AppleTalk, depending on Control Panel
settings. If a program JMPs here, it must enter in emulation mode with the
direct-page register set to $0000, the data bank register set to $00, and the
program bank register set to $00, or RESET will not work.

Input K/DBR/D/e = $00

Output Doesn't return to calling program

PWRUP System cold-start routine.

PWRUP performs a partial system reset and then attempts to start the system
via a disk drive or AppleTalk. PWRUP also zeros out memory in bank 00
from address $0800-$BFFF. If a program JMPs here, it must enter in
emulation mode, with the direct-page register set to $0000, the data bank
register set to $00, and the program bank register set to $00, or RESET will
not work. If no startup device is available, the message Check Startup
Device appears on the screen.

Input K/DBR/D/e = $00

Output Doesn't return to calling program

SLOOP Disk controller slot search loop.

SLOOQP is the disk controller search loop. It searches for a disk controller
beginning at the peripheral ROM space (if RAM disk, ROM disk, or
AppleTalk has not been selected via the Control Panel as the startup
device) pointed to by LOCO and LOC1 (addresses $00/$01). If a startup
device is found, it JMPs to that card’s ROM space. If no startup device is
found, the message Check Startup Device appears on the screen. If
RAM disk or ROM disk has been selected, then the firmware JMPs to the
SmartPort code that handles those startup devices. If slot 7 was selected and
AppleTalk is enabled in port 7, the firmware JMPs to the AppleTalk boot
code in slot 7.

Input A=7?
X=2?
Y=2?
LOCO = (Address $00); must be $00, or startup will not occur
LOC1 = (Address $01); contains $Cn, where n = next slot
number to test for a startup device

Output Doesn'’t return to calling program

Appendix C: Firmware Entry Points in Bank $00

$FAD7 REGDSP Display contents of registers.

REGDSP displays all 65C816 register contents stored by the firmware and
Apple IIGS memory-state information, including shadowing and system
speed. Displayed values include A/X/Y/K/DBR/S/D/P/M/Q/m/x/e/L.
A/X/Y/S are always saved and displayed as 16-bit values, even if emulation
mode or 8-bit native mode is selected.

Input A=7?
X =7?
Y=2

Output Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P

$FB19 RTBL Register names table for 6502 registers only.

This is not a callable routine. It is a fixed ASCII string. The fixed string is
| ‘AXYPS’. Some routines require this string here, or they will not execute
properly. The most significant bit of each ASCII character is set to 1.

Input No input (not a callable routine)

Output No output (not a callable routine)

$FB1IE PREAD Read a hand controller.

PREAD returns a number that represents the position of the specified hand
controller.

Input A=7?
X =0, 1, 2, or 3 only = Paddle to read
Y=2?

Output Unchanged = X/DBR/K/D/e
Scrambled = A/B/P
Special = Y = Paddle count

$FB21 PREAD4 Check timeout paddle; then read the hand controller.

PREAD4 verifies that the paddle (hand controller) is in timeout mode and
then reads the paddle the same as PREAD does, returning a number that
represents the position of the specified hand controller.

Input A=7?
X =0,1, 2, or 3 only = Paddle to read
Y=?

Output Unchanged = X/DBR/K/D/e
Scrambled = A/B/P
Special = Y = Paddle count

Appendix C: Firmware Entry Points in Bank $00 235

—

$FB2F INIT Initialize text screen.
INIT sets up the screen for full window display and text Page 1.
Input A=?
X=7?
Y=
Output Unchanged = DBR/K/D/e

Scrambled = X/Y/B/P
Special = A = BASL

$FB39 SETTXT Set text mode.
SETTXT sets screen for full text window, but does not force text Page 1.

Input A=7?
X=7
Y=>?
Output Unchanged = DBR/K/D/e

Scrambled = X/Y/B/P
Special = A = BASL

$FB40 SETGR Set graphics mode.

SETGR sets screen for mixed graphics mode and clears the graphics portion
of the screen. It then sets the top of the window to line 20 for four lines of text
space below the graphics screen. :

]
ECERICRRSe)

Input !

A
X
Y

Output Unchanged = DBR/K/D/e
Scrambled = X/Y/B/P
Special = A = BASL

$FB4B SETWND Set text window size.
SETWND sets window to the following:

WNDLFT (address = $20) = $00

WNDWDTH (address = $21) = $28/$50 (40/80 columns)
WNDTOP (address $22) = A on entry

WNDBTM (address $23) = $18

Input A = New WNDTOP
X=2?
Y =?
Output Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = BASL

236 Appendix C: Firmware Entry Points in Bank $00

—

$FBS1 SETWND2 Set text window width and bottom size.
SETWND?2 sets window to the following:

WNDWDTH (address = $21) = $28/$50 (40/80 columns)
WNDBTM (address $23) = $18

Input A=?
X=7?
Y =2
Output Unchanged = X/DBR/K/D/e

Scrambled = Y/B/P
: Special = A = BASL

$FBSB TABV Vertical tab.

TABV stores the value in A in CV (address $25) and then calculates a new
base address for storing data to the screen.

Input A = New vertical position (line number)
X=7
Y=?

Output Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = BASL

$FB60 APPLEII Clears screen and displays Apple IIGS logo.

APPLEI clears the screen and displays the startup ASCII string ‘Apple IIGS’
on the first line of the screen.

Input A=7?
X=7?
Y=7?

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

$FB6F SETPWRC Create power-up byte.

SETPWRC calculates the “funny” complement of the high byte of the RESET
vector and stores it at PWREDUP (address $03F4).
Input A=7?
X=7
Y="?
Output Unchanged = X/Y/DBR/K/D/e

Scrambled = B/P
Special = A = PWREDUP

Appendix C: Firmware Entry Points in Bank $00 237

T ——

$FB78 VIDWAIT Check for a pause (Control-S) request.

VIDWAIT checks the keyboard for a Control-S if it is called with an $8D
(carriage return) in the accumulator. If a Control-S is found, the system falls
through to KBDWAIT. If it is not, control is sent to VIDOUT, where the
character is printed and the cursor advanced.

Input A = Output character
X=7?
Y=?

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

$FB88 KBDWAIT Wait for a keypress.

KBDWAIT waits for a keypress. The keyboard is cleared (unless the keypress
is a Control-C), and then control is sent to VIDOUT, where the character is
printed and the cursor advanced.

Input A=7?
X =7
Y=7?

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

$FBB3 VERSION One of the monitor ROM’s main identification bytes.

This is not a callable routine. It is a fixed hex value. The fixed value is $06.
This is the identification byte that indicates whether this is an Apple Ile or a
later system. This byte is the same in the Apple Ilc, the enhanced Apple Ilc,
the Apple Ile, the enhanced Apple Ile, and the Apple IIGS.

Input No input (not a callable routine)

Output No output (not a callable routine)

$FBBF ZIDBYTE2 One of the monitor ROM’s main identification bytes.

This is not a callable routine. It is a fixed hex value. The fixed value is $00.
This is the identification byte that indicates this is an enhanced Apple Ile or
a later system.

Input No input (not a callable routine)

Output No output (not a callable routine)

238 Appendix C: Firmware Entry Points in Bank $00

IS .—,

$FBCO ZIDBYTE One of the Monitor ROM’s main identification bytes.

This is not a callable routine. It is a fixed hex value. The fixed value is $EO.
This is the identification byte that indicates this is an enhanced Apple Ile or
a later system.

Input No input (not a callable routine)

Output No output (not a callable routine)

$FBC1 BASCALC Text base-address calculator.

BASCALC calculates the base address of the line for the next text character
on the 40-column screen. The values calculated are stored at BASL/BASH
(addresses $0028/$0029).

Input A = Line number to calculate base for
X=7
Y=?

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = BASL

$FBDD BELL1 Generate user-selected bell tone.

BELL1 generates the user-selected (via the Control Panel) bell tone. There
is a delay prior to the tone being generated to prevent rapid calls to BELL1
from causing distorted bell sounds.

Input A=7?
X=7
Y=7?

Output Unchanged = X/DBR/K/D/e
Scrambled = A/B/P
Special =Y = $00

$FBE2 BELL1.2 Generate user-selected bell tone.

BELL1.2 generates the user-selected (via the Control Panel) bell tone.
There is a delay prior to the tone being generated to prevent rapid calls to
BELL1.2 from causing distorted bell sounds.

Input A=7?
X=7
Y="?

Output Unchanged = X/DBR/K/D/e
/ Scrambled = A/B/P
Special = Y = $00

Appendix C: Firmware Entry Points in Bank $00 239

|

$FBE4 BELL2 Generate user-selected bell tone.

BELL2 generates the user-selected (via the Control Panel) bell tone. There
is a delay prior to the tone being generated to prevent rapid calls to BELL2
from causing distorted bell sounds.

Input A=?
X=7
Y="?

Output Unchanged = X/DBR/K/D/e
Scrambled = A/B/P
Special =Y = $00

$FBF0O STORADV Place a printable character on the screen.

STORADV stores the value in the accumulator at the next position in the text
buffer (screen location) and advances to the next screen location position.

Input A = Character to display in line
X=7?
Y=7?

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

$FBF4 ADVANCE Increment the cursor position.

ADVANCE advances the cursor by one position. If the cursor is at the
window limit, this call issues a carriage return to go to the next line on the
screen.

Input

]
Vo v

A
X
Y

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

$FBFD VIDOUT Place a character on the screen.

VIDOUT sends printable characters to STORADV. Return, line feed,
forward, reverse space, and so on are sent to the vector of appropriate
special routines.

Input A = Character to output
X=7
Y="?

Output Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
/ Special = A = Output character

240 Appendix C: Firmware Entry Points in Bank $00

—

$FC10 BS Backspace.

BS decrements the cursor one position. If the cursor is at the beginning of
the window, the horizontal cursor position is set to the right edge of the
window, and the routine goes to the UP subroutine.

Input A=7?
X =7
Y=?

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

$FC1A UP Move up a line.

UP decrements the cursor vertical location by one line unless the cursor is
currently on the first line.

Input A=7?
X =7
Y =7?

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P

$FC22 VTAB Vertical tab.
VTAB loads the value at CV (address $25) into the accumulator and goes to
VTABZ.
Input =

Il
A RN

A
X
Y

]

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = BASL
BASL/BASH (addresses $28/$29) = New base address

$FC24 VTABZ Vertical tab (alternate entry).

VTABZ uses the value in the accumulator to update the base address used for
storing values in the text screen buffer,

Input A = Line to calculate base address for
X=7?
Y =2?

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
- Special = A = BASL
BASL/BASH (addresses $28/$29) = New base address

Appendix C: Firmware Entry Points in Bank $00 241

T —

$FC42 CLREOP Clear to end of page.

CLREOP clears the text window from the cursor position to the bottom of the
window.

Input

I
A IR

A
X
Y

]

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P
$FC58 HOME Home cursor and clear to end of page.

HOME moves the cursor to the top of screen column 0 and then clears from
there to the bottom of the screen window.

Input A=7?

X=7?
Y =7

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P
$FC62 CR Begin a new line.

CR sets the cursor horizontal position at the left edge of the window and then
goes to LF to move to the next line on the screen.
Input A=?
X=7
Y=7?
Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

$FC66 LF Line feed.

LF increments the vertical position of the cursor. If the cursor vertical
position is not past the bottom line, the base address is updated; otherwise,
the routine goes to SCROLL to scroll the screen.
Input A=7?

X =2

Y=?
Output Unchanged = X/DBR/K/D/e

Scrambled = A/Y/B/P

242 Appendix C: Firmware Entry Points in Bank $00

—

$FC70

$FCOC

$FCOE

$FCA8

SCROLL Scroll the screen up one line.

SCROLL moves all characters up one line within the current text window.
The cursor postion is maintained.

Input A=7?
X =7
Y=7?

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

CLREOL Clear to end of line.

CLREOL clears a text line from the cursor position to the right edge of the
window.

Input =

I
N v v

A
X
Y

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

CLREOLZ Clear to end of line.

CLREOLZ clears from Y on the current line to the right edge of the text
window.

Input A=7?
X=7
Y = Horizontal position to start clearing from

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

WAIT Delay loop (system-speed independent).

WALIT delays for a specific amount of time and then returns to the program
that called it. The length of the delay is specified by the contents of the
accumulator. With A the contents of the accumulator, the delay is
1/2(26+27A+5AN2)*14/14.31818 microseconds. WAIT should be used as a
minimum delay time, not as the absolute delay time.

Input A=7?
X=2
Y="?
Output Unchanged = X/Y/DBR/K/D/e

Scrambled = B/P
Special = A = $00

Appendix C: Firmware Entry Points in Bank $00 243

$FCB4 NXTA4 Increment pointer at A4L/A4H (addresses $42/$43).
NXTA4 increments the 16-bit pointer at A4L/A4H and then goes to NXTA1,

Input A=7?
X=7?
Y=?

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P
$FCBA NXTA1l Compare A1L/A1H (addresses $3C/$3D) with A2L/A2H
(addresses $3E/$3F) and then increment A1L/A1H.

NXTA1 performs a 16-bit comparison of A1L/A1H with A2L/A2H and
increments the 16-bit pointer A1L/A1H.

Input A=7?
X=7?
Y =2

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P

$FCC9 HEADR Write a header to cassette tape (obsolete).

HEADR is an obsolete entry point for the Apple IIGS. It does nothing except
perform an RTS back to the calling routine.

Input A=7?
X=7
Y=?

Output Unchanged = A/X/Y/P/B/DBR/K/D/e

$FDOC RDKEY Get an input character and display old inverse flashing
cursor.

RDKEY is a character-input subroutine. It places the old Apple II inverse
character flashing cursor on the display at the current cursor position and
jumps to subroutine $FD10.

Input A=?
X=7
Y=2?

Output Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = Key pressed (entered character)

244 Appendix C: Firmware Entry Points in Bank $00

—

$FD10

$FD18

$FD1B

FD10 Get an input character and don’t display inverse flashing
character cursor.

FD10 is a character-input subroutine. It jumps to the subroutine whose
address is stored in KSWL/KSWH (addresses $38/$39), usually the standard
input subroutine KEYIN, which displays the normal cursor and returns with a
character in the accumulator. $FD10 returns only after a key has been
pressed or an input character has been placed in the accumulator.

Input A=7?
X=7
Y="?

Output Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = Key pressed (entered character)

RDKEY1 Get an input character.

RDKEY1 jumps to the subroutine whose address is stored in KSWL/KSWH
(addresses $38/$39), usually the standard input subroutine KEYIN, which
returns with a character in the accumulator. RDKEY1 returns only after a key
has been pressed or an input character has been placed in the accumulator.

Input A=?
X=7
Y="?

Output Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = Key pressed (entered character)

KEYIN Read the keyboard.

KEYIN is a keyboard-input subroutine. It tests the Event Manager to see if it
is active. If it is active, KEYIN reads the key pressed from the Event
Manager; otherwise, it reads the Apple keyboard directly. In any case, it
randomizes the random-number seed RNDL/RNDH (addresses $4E/$4F).
When a key is pressed, KEYIN removes the cursor from the display and
returns with the keycode in the accumulator.

Input A = Character below cursor
X=7
Y=?

Output Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = Key pressed (entered character)

Appendix C: Firmware Entry Points in Bank $00 245

$FD35

$FDG7

$FDOA

246

RDCHAR Get an input character and process escape codes.

RDKEY is a character-input subroutine; it also interprets the standard
Apple escape sequences. It places an appropriate cursor on the display at
the cursor position and jumps to the subroutine whose address is stored in
KSWL/KSWH (addresses $38/$39), usually the standard input subroutine
KEYIN, which returns with a character in the accumulator. RDCHAR returns
only after a non-e escape-sequence key has been pressed or an input
character has been placed in the accumulator.

Input A=7?
X=7
Y=7?

Output Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = Key pressed (entered character)

GETLNZ Get an input line after issuing a carriage return.

GETLNZ is an alternate entry point for GETLN that sends a carriage return to
the standard output and then continues in GETLN. The calling program
must call GETLN with the prompt character at PROMPT (address $33).

Input A=7?
X=7?
Y=2?
PROMPT = (Address $33) = Prompt character

Output Unchanged = DBR/K/D/e
Scrambled = A/Y/B/P
Special = $200-$2xx contains input line
X = Length of input line

GETLN Get an input line with a prompt.

GETLN is a standard input subroutine for entire lines of characters. The
calling program must call GETLN with the prompt character at PROMPT
(address $33).

Input A=7?

X=7

Y=?

PROMPT = (Address $33) = Prompt character
Output Unchanged = DBR/K/D/e

Scrambled = A/Y/B/P

Special = $200-$2xx contains input line
X = Length of input line

Appendix C: Firmware Entry Points in Bank $00

$FD6C

$FDGF

$FD8B

GETLNO Get an input line with a prompt (alternate entry).

GETLNO outputs the contents of the accumulator as the prompt. If the user
cancels the input line with Control-X or by entering too many backspaces,
the contents of PROMPT (address $33) will be issued as the prompt when it
gets another line.

Input A = prompt character
X=2?
Y=?

PROMPT = (Address $33) = Prompt character

Output Unchanged = DBR/K/D/e
Scrambled = A/Y/B/P
Special = $200-$2xx contains input line
X = Length of input line

GETLN1 Get an input line with no prompt (alternate entry).

GETLN1 is an alternate entry point for GETLN that does not issue a prompt
before it accepts the input line. If the user cancels the input line with
Control-X or by entering too many backspaces, the contents of PROMPT
(address $33) will be issued as the prompt when it gets another line.

Input A=?
X =7
Y =?
PROMPT = (Address $33) = Prompt character

Output Unchanged = DBR/K/D/e
Scrambled = A/Y/B/P
Special = $200-$2xx contains input line
X = Length of input line

CROUT1 Clear to end on line; then issue a carriage return.

CROUT1 clears the current line from the current cursor position to the right
edge of the text window. It then goes to CROUT to issue a carriage return.

Input A=7?
X=7
Y=?

Output Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = $8D (carriage return)

Appendix C: Firmware Entry Points in Bank $00 247

$FDS8E CROUT Issue a carriage return.

CROUT issues a carriage return to the output device pointed to by
CSWL/CSWH (addresses $36/$37).

Input

Il
I

A
X
Y

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = $8D (carriage return)

$FD92 PRA1l Print a carriage return and A1L/A1H (addresses $3C/$3D).

PRA1 sends a carriage return character ($8D) to the current output device,
followed by the contents of the 16-bit pointer A1L/ATH (addresses
($3C/$3D) in hex, followed by a colon ().

Input A=?
X=7?
Y=7?

Output Unchanged= DBR/K/D/e
Scrambled = X/B/P
Special = A = $BA (colon)
Y = $00

$FDDA PRBYTE Print a hexadecimal byte.

PRBYTE outputs the contents of the accumulator in hexadecimal format to
the current output device.

Input A = Hex byte to print
X=7?
Y=?

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P
$FDE3 PRHEX Print a hexadecimal digit.

PRHEX outputs the lower nibble of the accumulator as a single hexadecimal
digit to the current output device.

Input A = Lower nibble is digit to output
X=7?
Y=7?

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P

248 Appendix C: Firmware Entry Points in Bank $00

I

$FDED COUT Output a character.

COUT calls the current output subroutine. The character to output should be
in the accumulator. COUT calls the subroutine whose address is stored in
CSWL/CSWH (addresses $36/$37), which is usually the standard character-
output routine COUT1.

Input A = Character to print
X=7
Y=2?

Output Unchanged = A/X/Y/DBR/K/D/e
Scrambled = B/P

$FDFO COUT1 Output a character to the screen.

COUT1 displays the character in the accumulator on the Apple screen at the
current output cursor position and advances the output cursor. It places the
character using the settings of the normal/inverse location INVFLG (address
$32). It handles the control characters for return ($8D), line feed ($8C),
Backspace/Left Arrow ($88), Right Arrow ($95), and bell ($87) and the
Change Cursor command (Control-A = $9E).

Input A = Character to print
X=7
Y=7?

Output Unchanged = A/X/Y/DBR/K/D/e
Scrambled = B/P

$FDF6 COUTZ Output a character to the screen without masking it with the
inverse flag.

COUTZ outputs the character in the accumulator without masking it with the
inverse flag INVFLG (address $32). Output goes to the screen.

Input A = Character to print
X=2?
Y=2?

Output Unchanged = A/X/Y/DBR/K/D/e
Scrambled = B/P

Appendix C: Firmware Entry Points in Bank $00 249

$FE1F

$FE2C

$FESE

250

IDROUTINE Returns identification information about the system.

IDROUTINE is called with ¢ (carry) set. If it returns with ¢ (carry) clear, then
the system is an Apple IIGS or a later system, and the registers A/X/Y
contain identification information about the system.

Input A=7?
X=7?
Y=?

Output Unchanged = DBR/K/D/e
Scrambled = B/P
Special = ¢ (carry) = 0 if Apple IIGS or later. If ¢ = 0, then A/X/Y
contain identification information. If ¢ = 1, then
A/X/Y are unchanged.

MOVE Original Monitor Move routine.

MOVE copies the contents of memory from one range of locations to
another. This subroutine is not the same as the Monitor Move (M)
command. The destination address must be in A4L/A4H (addresses
$42/$43), the starting source address in A1L/A1H (addresses $3C/$3D),
and the ending source address in A2L/A2H (addresses $3E/$3F) when
MOVE is called. Y must contain the starting offset into the
source/destination buffers.

Input A=7?
X=2?
Y = Starting offset into source/destination buffers (normally
$00)

A1L/A1H = (Addresses $3C/$3D) = Start of source buffer

A2L/A2H = (Addresses $3E/$3F) = End of source buffer

A4L/A4H = (Addresses $42/$43) = Start of destination
buffer

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P
Special = A1L/A1H = (Addresses $3C/$3D) = End of source

buffer + 1
A2L/A2H = (Addresses $3E/$3F) = End of source
buffer
A4L/A4H = (Addresses $42/$43) = End of destination
buffer + 1

“LIST” Old list entry point (not supported under Apple IIGS).

Appendix C: Firmware Entry Points in Bank $00

—

$FE80 SETINV Set inverse text mode.

SETINV sets INVFLG (address $32) so that subsequent text output to the
screen will appear in inverse mode.

Input A=7?
X=7
Y=7?

Output Unchanged = A/X/DBR/K/D/e
Scrambled = Y/B/P
Special = INVFLG (address $32) = $3F
Y = $3F

$FE84 SETNORM Set normal text mode.

SETNORM sets INVFLG (address $32) so that subsequent text output to the
screen will appear in normal mode.

Input A=7?
X=7
Y =?

Output Unchanged = A/X/DBR/K/D/e
Scrambled = Y/B/P
Special = INVFLG (address $32) = $FF
Y = $FF

$FE89 SETKBD Reset input to keyboard.

SETKBD resets input hooks KSWL/KSWH (addresses $38/$39) to point to
the keyboard.

Input A=7?
X=7?
Y=?

Output Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P

$FESB INPORT Reset input to a slot.

INPORT resets input hooks KSWL/KSWH (addresses $38/$39) to point to the
ROM space reserved for a peripheral card (or port) in the slot (or port)
designated by the value in the accumulator.

Input A = Slot number to set hooks to
X=2?
Y=?

Output Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P

Appendix C: Firmware Entry Points in Bank $00 251

$FE93 SETVID Reset output to screen.

SETVID resets output hooks CSWL/CSWH (addresses $36/$37) to the screen
display routines.

Input A=7?
X=7
Y=?

Output Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P

$FE95S OUTPORT Reset output to a slot.

OUTPORT resets output hooks CSWL/CSWH (addresses $36/$37) to point to
the ROM space reserved for a peripheral card (or port) in the slot (or port) I
designated by the value in the accumulator.

Input A = Slot number to reset hooks to
X=7
Y="?

Output Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P

$FEB6 GO Original Apple II Go entry point.

GO begins execution of the code pointed to by A1L/A2L (addresses
$3C/$3D).

Input A=7?
X = $01 (required)
Y=7?
A1L/A1H (addresses $3C/$3D) = Start address of program to

run
ASH (address $45) = A value to set up before running program
XREG (address $46) = X value to set up before running program
YREG (address $47) = Y value to set up before running program
STATUS (address $48) = P status to set up before running
program

Output Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P

252 Appendix C: Firmware Entry Points in Bank $00

T oupeny

$FECD WRITE Write a record to cassette tape (obsolete).

$FEFD

$FF2D

$FF3A

WRITE is an obsolete entry point under Apple IIGS. It does nothing except
perform an RTS back to the calling routine.

Input A=7?
X=7
Y=?

Output Unchanged = A/X/Y/P/BDBR/K/D/e

READ Read data from a cassette tape (obsolete).

READ is an obsolete entry point under Apple IIGS. It does nothing except
perform an RTS back to the calling routine.

Input A=7?
X=7
Y=?

Output Unchanged = A/X/Y/P/B/DBR/K/D/e
PRERR Print ERR on output device.

PRERR sends ERR to the output device and goes to BELL.

Input

]
v v

A
X
Y

]
¢

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = $87 (bell character)

BELL Send a bell character to the output device.

BELL writes a bell (Control-G) character to the current output device.

Input A=7?
X =7
Y =7?

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = $87 (bell character)

Appendix C: Firmware Entry Points in Bank $00 253

$FF3AF RESTORE Restore A/X/Y/P registers.
Restore 6502 register information from locations $45-$48.

Input A=7?
X=7
Y =7
ASH (address $45) = New value for A
XREG (address $46) = New value for X
YREG (address $47) = New value for Y
STATUS (address $48) = New value for P

Output Unchanged = DBR/K/D/e
Scrambled = B
Special = A = New value
X = New value
Y = New value
P = New value

$FF4A SAVE Save A/X/Y/P/S registers and clear decimal mode.

SAVE saves 6502 register information in locations $45-$49 and clears
decimal mode.

Input A=7?
X=7?
Y=?

Output Unchanged = Y/DBR/K/D/e

Scrambled = A/X/B/P

Special = ASH (address $45) = Value of A
XREG (address $46) = Value of X
YREG (address $47) = Value of Y
STATUS (address $48) = Value of P
SPNT (address $49) = Value of stack pointer 2
Decimal mode is cleared.

$FFs8 IORTS Known RTS instruction.

IORTS is used by peripheral cards to determine which slot a card is in. This
RTS is fixed and will never be changed.

Input A=7?
X=7
Y=?

Output Unchanged = A/X/Y/DBR/K/D/e
Scrambled = Nothing

254 Appendix C: Firmware Entry Points in Bank $00

—

$FF65

$FF69

$FF6C

OLDRST Old Monitor entry point.

OLDRST sets up the video display and keyboard as output and input devices.
It sets hex mode, does not beep, and enters the Monitor at MONZ2. It does
not return to caller. All Monitor 65C816 register storage locations are reset
to standard values.

Input A=?
X=7
Y=7?

Output Does not return to caller

MON Standard Monitor entry point, with beep.

MON clears decimal mode, beeps bell, and enters the Monitor at MONZ.
All Monitor 65816 register storage locations are reset to standard values.

Input A=7?
X=7
Y =7?

Output Does not return to caller

MONZ Standard Monitor entry point (Call -151).

All Monitor 65816 register storage locations are reset to standard values.
MONZ displays the * prompt and sends control to the Monitor input
parser.

]
ASEEECREN)

Input !

A
X
Y

Output Does not return to caller

MONZ2 Standard Monitor entry point (alternate).

MONZ2 does not change Monitor 65816 register storage locations. MONZ2
displays the * prompt and sends control to the Monitor input parser.

Input A=7?
X=7
Y =?

Output Does not return to caller

Appendix C: Firmware Entry Points in Bank $00 255

y

$FF70 MONZ4 No prompt Monitor entry point.

MONZ4 does not change Monitor 65816 register storage locations. No
prompt is displayed. Control is sent to the Monitor input parser.

Input A=7?
X=7?
Y=?

Output Does not return to caller

$FF8A DIG Shift hex digit into A21/A2H (addresses $3E/$3F).

DIG shifts an ASCII representation of a hex digit in the accumulator into
A2L/A2H (addresses $3E/$3F) and the exits into NXTCHR.

Input A = ASCII character EORed with $B0
X=7
Y = Entry point in input buffer $2xx at which to continue
decoding characters

Output Unchanged = DBR/K/D/e
Scrambled = A/B/P/X
Special =Y = Points to next character in input buffer at $2xx

$FFA7 GETNUM Transfer hex input into A2l/A2H (addresses $3E/$3F).

GETNUM scans the input buffer ($2xx) starting at position Y. It shifts hex
digits into A2L/A2H (addresses $3E/$3F) until it encounters a nonhex digit.
It then exits into NXTCHR.

Input A=?

X=2?
Y = Entry point in input buffer $2xx at which to start decoding
characters

Output Unchanged = DBR/K/D/e
Scrambled = A/B/P/X
Special = Y = Points to next character in input buffer at $2xx

256 Appendix C: Firmware Entry Points in Bank $00

e e R B

$FFAD NXTCHR Translate next character.

NXTCHR is the loop used by GETNUM to parse each character in the input
buffer and convert it to a value in A2L/A2H (address $3E/$3F). It also
upshifts any lowercase ASCII values that appear in the input buffer (addresses

$2xx).
Input A=7?
X=7
Y = Entry point in input buffer $2xx at which to start decoding
characters

Output Unchanged = DBR/K/D/e
Scrambled = A/B/P/X
Special = Y = Points to next character in input buffer at $2xx

$FFBE TOSUB Transfer control to a Monitor function.

TOSUB pushes an execution address onto the stack and then performs an
RTS to the routine. It is of very limited use to any program.

Input A=?
X=7
Y = Offset into subroutine table

Output Unchanged = DBR/K/D/e
Scrambled = A/B/P/X/Y

$FFC7 ZMODE Zero out Monitor’s mode byte MONMODE (address $31).
ZMODE zeroes out MONMODE (address $31).
Input A=?
X =2
Y =2

Output Unchanged = A/X/DBR/K/D/e
Scrambled = P/B
Special =Y = $00

[\)
on
~

Appendix C: Firmware Enfry Points in Bank $60

Appendix D

Vectors

This appendix lists the Apple IIGS vectors. A vector is usually either a 2-byte address in
page $00 or (possibly) a 4-byte jump instruction in a different bank of memory.
Vectors are used to ensure a common interface point between externally developed
programs and system-resident routines. External software jumps directly or indirectly
through these vectors instead of attempting to locate and jump directly to the routines
themselves. When a new version of the system is released, the vector contents change,
thereby maintaining system integrity.

For all of the vectors defined in this chapter, the following definitions apply:

O A represents the lower 8 bits of the accumulator.

O B represents the upper 8 bits of the accumulator.

0 X and Y represent 8-bit index registers.

O DBR represents the data bank register.
O K represents the program bank register.

O P represents the processor status register.
O S represents the processor stack register.
O D represents the direct-page register.

O e represents the emulation-mode bit.

O c represents the carry flag.

O v represents the overflow flag.

O ? represents a value that is undefined.

258

Bank $00 page 3 vectors
$03F0-$03F1 BRKV User BRK vector.

Address of subroutine that handles BRK interrupts. Normally
points to OLDBRK (address $FA59) in Monitor ROM.

$03F2-$03F3 SOFTEV User soft-entry vector for RESET.

Address of subroutine that handles warm start (RESET
pressed). Normally points to BASIC or operating system.

$03F4 PWREDUP EOR of high byte of SOFTEV address.

PWREDUP = SOFTEV + 1 EORed with constant $AS. If
PWREDUP does not equal SOFTEV + 1 EORed with constant
$AS, system performs cold start. If PWREDUP equals
SOFTEV + 1 EORed with constant $AS, system performs warm
start.

$03F5-$03F6-$3F7 AMPERV Applesoft & JMP vector.

Address of subroutine that handles Applesoft & (ampersand)
commands. Normally points to IORTS (address $FA58) in
Monitor. Address $03F5 contains a JMP ($4C) opcode.

$03F8-$03F9-$3FA USRADR User Control-Y and Applesoft.
USR function JMP vector.

Address of subroutine that handles user Control-Y and
Applesoft USR function commands. Normally points to MON
(address $FF65) in Monitor; points to BASIC.SYSTEM warm-
start address if ProDOS 8 is loaded. Address $03F8 contains a
JMP ($4C) opcode.

$03FB-$03FC-$3FD NMI User NMI vector.

Address of subroutine that operating systems or applications
can change to gain access to NMI interrupts. Normally points
- to OLDRST (address $FF59) in Monitor ROM or to operating
| : system if one is loaded. Address $03FB contains a JMP ($4C)
opcode.

$03FE-$03FF IRQLOC User IRQ vector.

Address of subroutine that operating systems or applications

can change to gain access to IRQ interrupts. Normally points
‘, to MON (address $FF65) in Monitor ROM or to operating
system if one is loaded.

Bank $00 page 3 vectors 259

Bank $00 page C3 routines

$C311 AUXMOVE Move data blocks between main and
auxiliary 48K memory.

AUXMOVE is used by the Apple Ile and Apple IIc to move
data blocks between main and auxiliary memory. For
compatibility reasons, Apple IIGS also supports this entry
point if the 80-column firmware is enabled via the Control
Panel.

Input

= Move from main to auxiliary memory
= 0 = Move from auxiliary to main memory

A1L = (Address $3C); source starting address,
low-order byte

A1H = (Address $3D); source starting address,
high-order byte

A2L = (Address $3E); source ending address,
low-order byte

A2H = (Address $3F); source ending address,
high-order byte

A4L = (Address $42); destination starting
address, low-order byte

A4H = (Address $43); destination starting

address, high-order byte

Output Unchanged = A/X/Y/DBR/K/D/e

Changed = B/P

Al1L/A1H = (Addresses $3C/$3D)=16-bit source
ending address +1

A2L/A2H = (Addresses $3E/$3F)=16-bit source
ending address

A4L/A4H = (Addresses $42/$43)=16-bit original
destination address + number of
bytes moved + 1

260 Appendix D: Vectors

B

$C314

XFER Transfer program control between main
and auxiliary 48K memory.

XFER is used by the Apple Ile and Apple IIc to transfer control
between main and auxiliary memory. For compatibility
reasons, the Apple IIGS also supports this entry point if the
80-column firmware is enabled via the Control Panel. XFER
assumes that the programmer has saved the current stack
pointer at $0100 in auxiliary memory and the alternate stack
pointer at $0101 in auxiliary memory before calling XFER and
restores them after regaining control. Failure to restore these
pointers causes program errors and incorrect interrupt

handling.
Input A=7?
X=?
Y="?
¢ = 1 = Transfer control from main to auxiliary
memory
¢ = 0 = Transfer control from auxiliary to main
memory
v = 1 = Use page zero and stack in auxiliary
memory

v =0 = Use page zero and stack in main memory

$03ED = Program starting address, low-order
byte

$03EE = Program starting address, high-order
byte

Output Unchanged = A/X/Y/DBR/K/D/e
Changed = B/P :

Bank $00 page C3 routines 261

Bank $00 page Fx vectors
$FFE4-$FFES NCOP Native-mode COP vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from

the ROM and used whenever a native-mode COP is executed.

$FFE6-$FFE7 NBREAK Native-mode BRK vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever a native-mode BRK is executed.

$FFE8-$FFE9 NABORT Native-mode ABORT vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever a native-mode ABORT is executed.

$FFEA-$FFEB NNMI Native-mode NMI vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever a native-mode NMI is executed.

$FFEE-$FFEF NIRQ Native-mode IRQ vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever a native-mode IRQ is executed.

262 Appendix D: Vectors

i*

$FFF4-$FFF5 ECOP Emulation-mode COP vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever an emulation-mode COP is
executed.

$FFF8-$FFF9 EABORT Emulation-mode ABORT vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever an emulation-mode ABORT is
executed.

$FFFA-$FFFB ENMI Emulation-mode NMI vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever an emulation-mode NMI is
executed.

$FFFC-$FFFD ERESET RESET vector.

This is not a callable routine. It is a 16-bit value that changes
: with each ROM release. Its value is not guaranteed. No

| program should use this value. This vector is pulled from the
: ROM and used whenever a RESET is executed.

$FFFE-$FFFF EBRKIRQ Emulation-mode BRK/IRQ vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever an emulation-mode BRK or IRQ is
executed.

Bank $00 page Fx vectors 263

Bank $E1 vectors

The vectors DISPATCH1 through SYSMGRV are guaranteed to be in the given
locations in this and all future Apple 1IGS—compatible machines.

$E1/0000-0003

$E1/0004-0007

$E1/0008-000B

$E1/000C—000F

$E1/0010-0013

264 Appendix D:

DISPATCH1 Jump to tool locator entry type 1.

Unconditional jump to tool locator entry type 1. JSL from
user’s code directly to the tool locator with this entry point.
The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

DISPATCH?2 Jump to tool locator entry type 2.

Unconditional jump to tool locator entry type 2. JSL to a JSL
from user’s code to the tool locator with this entry point. The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

UDISPATCH1 Jump to tool locator entry type 1.

Unconditional jump to user-installed tool locator entry type
1. JSL from user’s code directly to the user-installed tool
locator with this entry point. The form of the call in memory
is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

UDISPATCH?2 Jump to tool locator entry type 2.

Unconditional jump to user-installed tool locator entry type
2. JSL to a JSL from user’s code to the user-installed tool
locator with this entry point. The form of the call in memory
is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

INTMGRYV Jump to system interrupt manager.

Unconditional jump to the main system interrupt manager.
If the application patches out this vector, the application
must be able to handle all interrupts in the same fashion

as the built-in ROM interrupt manager. Otherwise, the system
will not, in most circumstances, run. The form of the call

in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

Vectors

VOTITIiT

$E1/0014-0017 COPMGRYV Jump to COP manager.

Unconditional jump to COP (coprocessor) manager.
Currently points to code that causes the Monitor to print a
COP instruction disassembly, similar to the BRK
disassembly. The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0018-001B ABORTMGRV Jump to abort manager.

Unconditional jump to abort manager. Currently points to
code that causes the Monitor to print the disassembly of the
instruction being executed, similar to the BRK disassembly.
The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/001C—-001F SYSDMGRV Jump to system failure manager.

Unconditional jump to the system failure manager. This
call assumes the following:

O Entry is in 16-bit native mode.

O c (carry) = 0 if user-defined message is pointed to on stack;
c = 1 if the default value is used.

O The stack is set up as follows:

9,S = Error high byte

8,S = Error low byte

7,S = Null byte of message address
6,S = Bank byte of message address
5,S = High byte of message address
4,S = Low byte of message address
3,S = Unused return address

2,S = Unused return address

1,S = Unused return address

The form of the call in memory is as follows:
JMP abslong ($5C/low byte/high byte/bank byte)

Bank SE1 vectors 265

IRQ.APTALK and IRQ.SERIAL vectors

Vectors IRQ.APTALK and IRQ.SERIAL are normally set up to point to the internal
interrupt handler or to code that sets carry and then performs an RTL back to the
interrupt manager. All the routines are called in 8-bit native mode and at high speed.
The data bank register, the direct register, MSLOT ($7F8), and the stack pointer are
not preset or set as for other interrupt vectors. The called routine must return carry
clear if the routine handled the interrupt and carry set if it did not handle the interrupt.
Carry clear tells the interrupt manager not to call the application or operating system.
Carry set tells the interrupt manager that the application or the operating system must
be notified of the current interrupt. The called routines must preserve the DBR, speed,
8-bit native mode, D register, stack pointer (or just use current stack), and MSLOT for
proper operation. A/X/Y need not be preserved. Interrupts are disabled on entry to
all interrupt handlers. The user’s interrupt handler must not reenable interrupts from
within the handler. AppleTalk and the Desk Manager are allowable exceptions. These
vectors should be accessed only via the Miscellaneous Tool Set. Their location in
memory is not guaranteed.

$E1/0020-0023 IRQ.APTALK Jump to AppleTalk interrupt handler.

Unconditional jump to the AppleTalk LAP (link access
protocol) interrupt handler. Handles SCC interrupts
intended for AppleTalk. The form of the call in memory is
as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0024-0027 IRQ.SERIAL Jump to serial-port interrupt handler.

Unconditional jump to serial-port interrupt handler.
Handles interrupts intended for serial ports. The form of the
call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

266 Appendix D: Vectors

IRQ.SCAN through IRQ.OTHER vectors

Vectors IRQ.SCAN through IRQ.OTHER are normally set up to point to the internal
interrupt handler or to code that sets carry and then performs an RTL back to the
interrupt manager. All the routines are called in 8-bit native mode and with the high
speed at data bank register set to $00 and the direct register set to $0000. The called
routine must return carry clear if it handled the interrupt and carry set if it did not
handle the interrupt. Carry clear tells the interrupt manager not to call the application
or operating system. Carry set tells the interrupt manager that the application or the
operating system must be notified of the current interrupt. The called routines must
preserve the DBR, speed, 8-bit native mode, and D register for proper operation.
A/X/Y need not be preserved. Interrupts are disabled on entry to all interrupt
handlers. The handler must not reenable interrupts from within the interrupt handler.
AppleTalk and the Desk Manager are allowable exceptions. These vectors should be
accessed only via the Miscellaneous Tool Set. Their location in memory is not
guaranteed.

$E1/0028-002B IRQ.SCAN Jump to scan-line interrupt handler.

Unconditional jump to the scan-line interrupt handler.
Used by the Cursor Update routine. The form of the call
in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/002C-002F IRQ.SOUND Jump to sound interrupt handler.

Unconditional jump to the sound interrupt handler.
Handles all interrupts from the Ensoniq sound chip. The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0030-0033 IRQ.VBL Jump to VBL handler.

Unconditional jump to the vertical blanking (VBL) interrupt
handler. The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0034-0037 IRQ.MOUSE Jump to mouse interrrupt handler.

Unconditional jump to the mouse interrupt handler. The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

IRQ.SCAN through IRQ.OTHER vectors

267

$E1/0038-003B IRQ.QTR Jump to quarter-second interrupt
handler.

Unconditional jump to the quarter-second interrupt handler.
Used by AppleTalk. The form of the call in memory is as
follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/003C-003F IRQ.KBD Jump to keyboard interrupt handler.

Unconditional jump to the keyboard interrupt handler.
Currently the keyboard has no hardware interrupt. Keyboard
interrupts are still available by making a call to the
Miscellaneous Tool Set, telling it to install a heartbeat task
that interrupts every time VBL polls the keyboard. If a key is
pressed, the heartbeat task will JSL through this vector. This
forms a quasi-keyboard interrupt. The form of the call in
memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)
$E1/0040-0043 IRQ.RESPONSE Jump to ADB response interrupt
handler.

Unconditional jump to the ADB (Apple DeskTop Bus)
response interrupt handler. The form of the call in memory is
as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0044-0047 IRQ.SRQ Jump to SRQ interrupt handler.

Unconditional jump to the ADB (Apple DeskTop Bus) SRQ
(service request) interrupt handler. The form of the call in
memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0048-004B IRQ.DSKACC Jump to Desk Manager interrupt
handler.

Unconditional jump to the Desk Manager interrupt
handler. Invoked by the user pressing Control-G3-Esc. The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

268 Appendix D: Vectors

S N

$E1/004C—-004F IRQ.FLUSH Jump to keyboard FLUSH interrupt
! handler.

Unconditional jump to the keyboard FLUSH interrupt
handler. Invoked by the user pressing Control--Backspace.
The form of the call in memory is as follows:

JMP abslong (§5C/low byte/high byte/bank byte)

$E1/0050-0053 IRQ.MICRO Jump to keyboard micro abort interrupt
handler.

Unconditional jump to the keyboard micro abort recovery
routine. This interrupt occurs only when the keyboard micro
has a catastrophic failure. If such a failure does occur, the
firmware will try to resynchronize up to the keyboard micro
and initialize. The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0054-0057 IRQ.1SEC Jump to 1-second interrupt handler.

Unconditional jump to the 1-second interrupt handler. The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0058-005B IRQ.EXT Jump to VGC external interrupt handler.

Unconditional jump to the VGC (video graphics chip)
external interrupt handler. Currently, the pin that generates
this interrupt is forced high so that no interrupt can be
generated. This interrupt handler is for future system
expansion and currently cannot be used. The form of the
call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/005C-00SF IRQ.OTHER Jump to other interrupt handler.

Unconditional jump to an installed interrupt handler that
handles interrupts other than the ones handled by the
internal firmware. This is a general-purpose vector. The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0060-0063 CUPDATE Cursor Update vector.

Unconditional jump to the Cursor Update routine in
QuickDraw II. The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)
IRQ.SCAN through IRQ.OTHER vectors 269

$E1/0064-0067 INCBUSYFLG Increment busy flag vector.

Unconditional jump to the increment busy flag routine. The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0068-006B DECBUSYFLG Decrement busy flag vector.

Unconditional jump to the decrement busy flag routine. The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/006C-006F BELLVECTOR Monitor bell vector intercept routine.

Unconditional jump to a user-installed BELL routine. The
Monitor calls this routine whenever a BELL character ($87)
is output through the output hooks (CSWL/CSWH $36/$37)
and whenever BELL1, BELL1.2, and BELL2 are called. The
routine is called in 8-bit native mode and must return to the
Monitor in 8-bit native mode. The data bank register and
direct register must be preserved. Carry must be returned
clear, or the Monitor will generate its own bell sound. For
compatibility with existing programs, the X register must be
preserved during this call, and Y must be = $00 on exit from
this call. The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0070-0073 BREAKVECTOR Break vector.

Unconditional jump to a user-installed break vector. The
user’s routine is called in 8-bit native mode at high speed,
with the data bank register set to $00 and the direct register

set to $0000. The user’s routine must preserve the data bank
register, direct register, and speed and return in 8-bit native
mode with an RTL. The user’s routine must also clear carry, or
the normal break routine pointed to by the vector at
$00/03F0.03F1 will be called. If carry comes back clear, the

break interrupt is processed and the application program is
resumed 2 bytes past the BRK opcode. Hns vector is set up for

use by debuggers such as the Apple I1IGS debugger. The form
of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

270 Appendix D: Vectors

_

$E1/0074-0077

$E1/0078-007B

$E1/007C-007F

TRACEVECTOR Trace vector.

Unconditional jump to a trace vector. The user’s routine is
called in 8-bit native mode at high speed, with the data bank
register set to $00 and the direct register set to $0000. The
user’s routine must preserve the data bank register, direct
register, and speed and return in 8-bit native mode with an
RTL. If the user’s routine clears carry, the Monitor firmware
resumes where it left off. If the user sets carry, the Monitor
firmware currently will print Trace on the screen and continue
where it left off. This vector is set up for use by future system
firmware and by current debuggers. The form of the call in
memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

STEPVECTOR Step vector.

Unconditional jump to a step vector. The user’s routine is
called in 8-bit native mode at high speed, with the data bank
register set to $00 and the direct register set to $0000. The
user’s routine must preserve the data bank register, direct
register, and speed and return in 8-bit native mode with an
RTL. If the user clears carry, the Monitor firmware resumes
where it left off. If the user’s routine sets carry, the Monitor
firmware currently will print Step on the screen and continue
where it left off. This vector is set up for use by future system
firmware and by current debuggers. The form of the call in
memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

Reserved for future expansion.

This vector is reserved for future system expansion and is not
available to the user. The form of the call in memory is as
follows:

JMP abslong ($5C/low byte/high byte/bank byte)

IRQ.SCAN through IRQ.OTHER vectors 271

TOWRITEBR through MSGPOINTER vectors

Vectors TOWRITEBR through MSGPOINTER are guaranteed to stay in the same
memory locations in all Apple IIGS—compatible systems. These vectors are for
convenience and are not to be altered by any application.

$E1/0080-0083 TOWRITEBR Write BATTERYRAM routine.

This vector points to a routine that copies the
BATTERYRAM buffer in bank $E1 to the clock chip
BATTERYRAM with proper checksums. This routine is
called by the Miscellaneous Tool Set and by the Control
Panel. The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0084-0087 TOREADBR Read BATTERYRAM routine.

This vector points to a routine that copies the clock chip
BATTERYRAM to the BATTERYRAM buffer in bank $E1,
compares the checksums, and if the checksums match,
returns to the caller. If the checksums do not match or if one
of the values in the BATTERYRAM is out of limits, the system
default parameters are written into the BATTERYRAM buffer
in bank $E1 and then into the clock chip BATTERYRAM
with proper checksums. This routine is called by the
Miscellaneous Tool Set and by the Control Panel. The form
of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0088-008B TOWRITETIME Write time routine.

This vector points to a routine that writes to the seconds
registers in the clock chip. It transfers the values in the
CLKWDATA buffer in bank $E1 to the clock chip. This routine
is called by the Miscellaneous Tool Set only. It returns carry
clear if the write operation was successful and carry set if it
was unsuccessful. The form of the call in memory is as
follows:

JMP abslong ($5C/low byte/high byte/bank byte)

272 Appendix D: vectors

_

i |

$E1/008C—-008F

$E1/0090-0093

$E1/0094-0097

$E1/0098-009B

TOREADTIME Read time routine.

This vector points to a routine that reads from the seconds
registers in the clock chip. It transfers the values to the
CLKRDATA buffer in bank $E1 to the clock chip. This routine
is called by the Miscellaneous Tool Set only. It returns carry
clear if the read operation was successful and carry set if it was
unsuccessful. The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

TOCTRL.PANEL Show Control Panel.

This vector points to the Control Panel program. It assumes
it was called from the Desk Manager. It uses most of zero
page. It RTLs back to the Desk Manager when Quit is chosen.
The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

TOBRAMSETUP Set up system to BATTERYRAM
parameters routine.

This vector points to a routine that sets up the system
parameters to match the values in the BATTERYRAM buffer.
In addition, if it is called with carry clear, it sets up the slot
configuration (internal versus external). If it is called with
carry set, it does not set up the slot configuration (internal
versus external). BATTERYRAM buffer $E1 values can be set
via the Miscellaneous Tool Set only. The form of the call in
memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

TOPRINTMSGS8 Print ASCII string designated by the
8-bit accumulator.

This vector points to a routine that displays ASCII strings
pointed to by multiplying the 8-bit accumulator times 2
(shifting it left 1 bit) and then indexing into the address
pointer table pointed to by MSGPOINTER (address
$E1/00C0; 3-byte pointer). It then uses that address to get
the string to display. This routine is used by the built-in
Control Panel, by any text-based RAM Control Panel,
and by the Monitor (to display messages). The form of the
call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

TOWRITEBR through MSGPOINTER vectors 273

$E1/009C-009F TOPRINTMSG16 Print ASCII string designated by the
16-bit accumulator.

This vector points to a routine that displays ASCII strings
pointed to by the 16-bit A register. The accumulator is used
to index into the address pointer table pointed to by
MSGPOINTER (address $E1/00C0; 3-byte pointer). It then
uses that address to get the string to display. This routine is
used by the built-in Control Panel, by any text-based RAM
Control Panel, and by the Monitor (to display messages).
The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/00A0-00A3 CTRLYVECTOR User Control-Y vector.

Unconditional jump to a user-defined Control-Y vector. The
user’s routine is called in 8-bit native mode, with the data
bank register set to $00 and the direct register set to $0000.
The user’s routine must preserve the data bank register, direct
register, and speed and return in emulation mode with an RTS
from bank $00. If no debugger vector is installed, the Monitor
firmware will go to the user’s routine via the normal

Control-Y vector in bank $00 (USRADR 00/03F8.03F9.03FA).
This vector is set up to be used by debuggers. The form of the
call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)
$E1/00A4-00A7 TOTEXTPG2DA Point to Alternate Display Mode desk
accessory.

This vector points to the Alternate Display Mode program. It
assumes it was called from the Desk Manager. It RTLs back to
the Desk Manager when a key is pressed. The form of the call

in memory is 2§ follows:
JMP abslong ($5C/low byte/high byte/bank byte)
$E1/00A8-00BF PRO16MLI ProDOS 16 MLI vectors.

This vector points to the ProDOS 16 routines. Consult
ProDOS 16 documents for information about these calls.

274 Appendix D: Vectors

—

$E1/00C0-00C2 MSGPOINTER Pointer to all strings used in Control
Panel, Alternate Display Mode, and
Monitor system messages.

This 3-byte vector points to the address pointer table that
points to ASCII strings used by the Control Panel, Alternate
Display Mode, and Monitor system messages. It is not
useful for users. The form of the call in memory is as
follows:

low byte/high byte/bank byte

TOWRITEBR through MSGPOINTER vectors 275

Appendix E

Soft Switches

This appendix contains a list of the Apple IIGS soft switches—the locations at which
various program-definable system control options may be accessed and changed.
Note that this listing of soft switches is provided for reference only. You should change
the contents of a soft switch only by using the appropriate tool from the toolbox. Refer
to the Apple IIGS Toolbox Reference for more information.

Important

If you choose to change the contents of any of the soft switches (not
recommended other than by using the toolbox routines) for any bit that is listed
herein as undefined. you should mask that bit. In other words, read the current
confents of the data byte, modify only the bits that are defined, and write the
contents back to the switch location.

Tables E-1 and E-2 are symbol tables sorted by symbol and address.

Cc000: cCo000 20 IOADR EQU * A1l I/0 is at $Cxxx
C000: CO000 21 KBD EQU * ;Bit 7 = 1 if keystroke
;Bits 6-0 = Key pressed

C000:00 22 CLR80COL DFB C ;Disable 80-column store
C001:00 23 SET80COL DFB 0 ;Enable 80-column store
€002:00 24 RDMAINRAM DFB 0 ;Read from main 48K RAM
C003:00 25 RDCARDRAM DFB 0 ;Read from alternate 48K RAM
Cc004:00 26 WRMAINRAM DFB 0 ;Write to main 48K RAM
C005:00 27 WRCARDRAM DFB 0 ;Write to alternate 48K RAM
C006:00 28 SETSLOTCXROM DFB 0 ;Use ROM on cards

cOoN7 .00 20 CETINTCMROM Drp 0 sUse drterildl KoM

c008:00 30 SETSTDZP DFB 0 ;Use main zero page/stack
C009:00 31 SETALTZP DFB 0 ;Use alternate zero page/stack
276

-

C00A:
CO0B:
cooc:
CO0D:
CO0E:
COOF:
C010:
C011:
co0l1l2:
C013:
C014:
C015:
C0l6:
C017:
c018:
Cc019:
c01Aa:
C01B:
colc:
C01D:
CO1lE:

CO1lF:
c020:

c021:
co021:
co021:
c021:
co021:
c021:
c021:

co021:
Cc021:
co021:
c021:

c022:
co022:
c022:
co022:
c022:
c022:

c022:

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00

00

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54

56
57
58
59
60
61
62

64
65
66
68

70
71
72
73
74
75

76

SETINTC3ROM DFB 0 ;Enable internal slot 3 ROM

SETSLOTC3ROM DFB 0 ;Enable external slot 3 ROM

CLR80OVID DFB 0 ;Disable 80-column hardware

SET80VID DFB 0 ;Enable 80-column hardware

CLRALTCHAR DFB 0 ;Normal LC, flashing UC

SETALTCHAR DFB 0 ;Normal inverse, LC; no flash

KBDSTRB DFB 0 ;Turn off keypressed flag

RDLCBNK2 DFB 0 ;Bit 7 = 1 if LC bank 2 is enabled

RDLCRAM DFB 0 ;Bit 7 = 1 if LC RAM read enabled

RDRAMRD DFB 0 ;Bit 7 = 1 if reading alternate 48K

RDRAMWRT DFB 0 ;Bit 7 = 1 if writing alternate 48K

RDCXROM DFB 0 ;Bit 7 = 1 if using internal ROM

RDALTZP DFB 0 , ;Bit 7 = 1 if slot zp enabled

RDC3ROM DFB 0 ;Bit 7 = 1 if slot c3 space enabled

RD80COL DFB 0 ;Bit 7 = 1 if 80-column store

RDVBLBAR DFB 0 ;Bit 7 = 1 if not VBL

RDTEXT DFB 0 7Bit 7 = 1 if text (not graphics)

RDMIX DFB 0 ;Bit 7 = 1 if mixed mode on

RDPAGE2 DFB 0 ;Bit 7 = 1 if TXTPAGE2 switched in

RDHIRES DFB 0 ;Bit 7 = 1 if HIRES is on

ALTCHARSET DFB 0 ;Bit 7 = 1 if alternate character

set in use

RD80VID DFB 0 ;Bit 7 = 1 if 80-column hardware on

DFB 0 ;Reserved for future system
expansion

* 7 6 5 4 3 2 1 0

*| | | | | | | | |

*|Enable | | | | | | | |

*|color/ | O | 0 | 0 | 0 | 0 | 0 |0 |

* |[mono | | | | | | I |

* | | | | I | I | |

* Aannnr MONOCOLOR status byte ~~ann

* MONOCOLCR bits defined as follows:

* Bit 7 = 0 enables color, 1 disables color
Bits 6, 5, 4, 3, 2, 1, 0 must be 0

*

MONOCOLOR DFB 0 iMonochrome/color selection register
* 7 6 5 4 3 2 1 0
* | | | I | | | | I
* | | I
* | Text color bits | Background color bits |
* | | |
*| | | | | | | | l

Appendix E: Soft Switches 277

c022: 78 TBCOLOR bits defined as follows:

*
c022: 79 * Bits 7, 6, 5, 4 = Text color bits
c022: 80 * Bits 3, 2, 1, 0 = Background color bits
Cc022: 81 *
C022: 82 * Color bits =
Cc022: 83 * $0 = Black
c022: 84 * $1 = Deep red
c022: 85 * $2 = Dark blue
Cc022: 86 * $3 = Purple
c022: 87 * $4 = Dark green
Cc022: 88 * $5 = Dark gray
Cc022: 89 * $6 = Medium blue
C022: 90 * $7 = Light blue
c022: 91 * $8 = Brown
C022: 92 * $9 = Orange
Cc022: 93 * $A = Light gray
c022: 94 * $B = Pink
Cc022: 95 * SC = Green
co022: 96 * SD = Yellow
c022: 97 * SE = Agquamarine
Cc022: 98 * SF = White
c022:00 100 TBCOLOR DFB 0 ; Text /background color selection
register
c023: 102 * 7 6 5 4 3 2 1 0
C023: 103 *| | | | | | | | |
c023: 104 *|VGC |1sec |Scan |Ext | |1sec |Scan |Ext |
Cc023: 105 *|int |int |int |int | 0 |int |int | int |
Cc023: 106 *|active |activelactivel| | |enable |enable|enable|
Cc023: 107 *| I l l | I | | I
Cc023: 108 * annnn YGCINT status byte 7 77
C023: 110 * VGCINT bits defined as follows:
Cc023: 111 * Bit 7 = 1 if interrupt generated by VGC
Cc023: 112 * Bit 6 = 1 if l-second timer interrupt
C023: 113 * Bit 5 = 1 if scan-line interrupt
c023: 114 * Bit 4 = 1 if external interrupt (forced low in
Apple IIGS)
Cc023: 115 * Bit 3 must be 0
Cc023: 116 * Bit 2 = l-second timer interrupt enable
Cc023: 117 * Bit 1 = scan-line interrupt enable
Cc023: 118 * Bit 0 = ext int enable (can’t cause an int in
Apple IIGs)
c023:00 120 VGCINT DFB 0 ;VGC interrupt register
278 Appendix E: Soft Switches

_

C024:
Cc024:
Cc024:
Cc024:
Cc024:
Cc024:
c024:

Cc024:
Cc024:
Cc024:
Cc024:
Cc024:
Cc024:

C025:
C025:
C025:
C025:
C025:
C025:
C025:

C025:
C025:
Cc025:
C025:
C025:
C025:
c025:
c025:
C025:
Cc025:

C026:
C026:
C026:
C026:
C026:
C026:
C026:

00

00

122
123
124
125
126
127
128

130
131
132
133
134
136

138
139
140
141
142
143
144

146
147
148
149
150
151
152
153
154
156

158
159
160
161
162
163
164

*

7 6 5 4 3 2 1

*|

*|Button | |

*|status |Delta |

Delta movement

* |now |sign

*|
*

Ann~nnc MOUSEDATA byte ~nArn

* MOUSEDATA bits defined as follows:
* Bit 7 = button 1 status if reading X data
* button 0 status if reading Y data
* Bit 6 = sign of delta 0 = "'+' — 1 = 11
* Bits 5, 4, 3, 2, 1, 0 = Delta movement
MOUSEDATA DFB 0 ;X or Y mouse data register
* 7 6 5 4 3 2 1
*| I |Update | | | | I |
* | Open |Closed|mod |Keypad|Repeat |Caps [Ctrl |Shift |
*|Apple |Apple |no keylkey lactive|lock |key | key |
* | key | key |press |active]| lactive|active|active]
x| I | I | I I | I
* rnnnn KEYMODREG status byte ~nann
* KEYMODREG bits defined as follows:
* Bit 7 = G key active
* Bit 6 = ® key active
* Bit 5 = Updated modifier latch without keypress
* Bit 4 = Keypad key active
* Bit 3 = Repeat active
* Bit 2 = Caps lock active
* Bit 1 = Control key active
* Bit 0 = Shift key active

KEYMODREG DFB 0 ;Key modifier register

*|
* |
* |
*|
*|

Data to/from keyboard micro

I | I I |

"N~~~ DATAREG byte ~~Ann

Appendix E: Soft Switches

279

|
C026: 166 * DATAREG bits defined as follows:
Cc026: 167 * Bits 7, 6, 5, 4, 3, 2, 1, 0 = Data to/from keyboard
micro

C026: 168 *
C026: 169 * Data at interrupt time in this register defined as

follows:
C026: 170 * Bit 7 = Response byte if set; otherwise, status byte
C026: 171 * Bit 6 = ABORT valid if set, and all other bits reset
C026: 172 * Bit 5 = Desktop Manager key sequence pressed
C026: 173 * Bit 4 = Flush buffer key sequence pressed
C026: 174 * Bit 3 = SRQ valid if set
C026: 175 * Bits 2, 1, 0; if all bits clear, then no FDB data

valid; otherwise the bits indicate the number of wvalid
C026: 176 * bytes received minus 1 (2-8 bytes total)
C026: 177 *
C026:00 179 DATAREG DFB 0 ;Data register in GLU chip
c027: 181 * 7 6 5 4 3 2 1 0
c027: 182 *| | | | | I | I |
c027: 183 *|Mouse |Mouse |Data |Data |Key |Key |[Mouse |Cmd |
Cc027: 184 *|reg |int | reg |int |ldata |int |X/Yreg|reg |
c027: 185 *|full |enable|full |enable|full |enable|data |[full |
Cc027: 186 *| | I | | | I | |
c027: 187 * rnnnn KMSTATUS byte 7 An”
c027: 189 * KMSTATUS bits defined as follows:
Cc027: 190 * Bit 7 = 1 if mouse register full
c027: 191 * Bit 6 = mouse interrupt disable/enable
c027: 192 = Bit 5 = 1 if data register full
Cc027: 193 * Bit 4 = data interrupt enable
c027: 194 * Bit 3 = 1 if key data full (never use, won’t work)
c027: 195 * Bit 2 = key data interrupt enable (never use, won’t

work)
c027: 196 * Bit 1 = 0 = mouse 'X' register data available
c027: 197 * 1 = mouse 'Y' register data available
Cc027: 198 * Bit 0 = Command register full
C027:00 200 KMSTATUS DFB 0 ;Keyboard/mouse status register
c028:00 201 ROMBANK DFB 0 ;ROM bank select toggle (not used in
Apple IIGS)

280 Appendix E: Soft Switches

—

C029: 203 * 7 6 5 4 3 2 1 0

- C029: 204 *| | | | | I | | |
- C029: 205 *|Enable |Linear|B/W | | | | |Enable|
Cc029: 206 *|super |video |Color| 0 | 0 | 0 | 0 |bank 1|
C029: 207 *|hi-res | |IDHires | | | | |batch |
- C029: 208 *| | | | | | | | |
- C029: 209 * AnAnA NEWVIDEO byte ~~~~~
- C029: 211 * NEWVIDEO bits defined as follows:
- C029: 212 * Bit 7 = 1 = Disable Apple IIe video (enables super
hi-res)
C029: 213 * Bit 6 = 1 to linearize for super hi-res
C029: 214 * Bit 5 = 0 for color double hi-res; 1 for B/W hi-res
Cc029: 215 * Bits 4, 3, 2, 1 must be 0
C029: 216 * Bit 0 = Enable bank 1 latch to allow long instructions
to access bank 1 directly; set by Monitor
C029: 217 * only; a programmer must not change this bit.
€029:00 219 NEWVIDEO DFB 0 ;Video/enable read alternate mem
with long instructions
C02A:00 220 DFB 0 ;Reserved for future system
expansion
C02B: 222 * 7 6 5 4 3 2 1 0
C02B: 223 *| | | | | | | | I
C02B: 224 *| Character Generator | NTSC/|Lang | | | |
C02B: 225 *| language select | PAL |select]| 0 | 0 | O |
CO2B: 226 *| | lbit | | I I
C02B: 227 *| I | | | | | | |
CO2B: 228 x AAAAA LANGSEL byte AAAAA
C02B: 230 * LANGSEL bits defined as follows:
C02B: 231 * Bits 7, 6, 5 = Character-generator language selector
C02B: 232 * Primary language Secondary language
C02B: 233 * $0 = English (USA) Dvorak
C02B: 234 * $1 = English (UK) USA
C02B: 235 * $2 = French Usa
C02B: 236 * $3 = Danish USA
C02B: 237 * $4 = Spanish USA
C02B: 238 * $5 = Italian USA
C02B: 239 * $6 = German USA
C02B: . 240 x $7 = Swedish USA
C02B: 241 * Bit 4 = 0 if NTSC video mode, 1 if PAL video mode
C02B: 242 * Bit 3 = LANGUAGE switch bit 0 if primary lang set
selected
C02B: 243 * Bits 2, 1, 0 must be 0
C02B:00 245 LANGSEL DFB 0 ;Language/PAL/NTSC select register
c02C:00 246 CHARROM DFB 0 ;Addr for tst mode read of character

ROM

Appendix E: Soft Switches 281

1
C02D: 248 * 7 6 5 4 3 2 1 0
C02D: 249 *| | | I | | | | |
C02D: 250 *|Slot7 |Slot6 [Slot5 |Slot4d | |Slot2 |Slotl | |
C02D: 251 *|intext |intext|intext|intext]| 0 |intext |intext| O |
C02D: 252 *|enable |enable|enable|enable| |enable |enable| |
C02D: 253 *| | | | | | | | |
C02D: 254 * nanan SLTROMSEL byte ~"*""~7
Cc02D: 256 * SLTROMSEL bits defined as follows:
Cc02D: 257 * Bit 7 = 0 enables internal slot 7, 1 enables slot ROM
C02D: 258 * Bit 6 = 0 enables internal slot 6, 1 enables slot ROM
Cc02D: 259 * Bit 5 = 0 enables internal slot 5, 1 enables slot ROM
C02D: 260 * Bit 4 = 0 enables internal slot 4, 1 enables slot ROM
C02D: 261 * Bit 3 must be 0
Cc02D: 262 * Bit 2 = 0 enables internal slot 2, 1 enables slot ROM
C02D: 263 * Bit 1 = 0 enables internal slot 1, 1 enables slot ROM
C02D: 264 * Bit 0 must be 0
Cc02D:00 266 SLTROMSEL DFB 0 ;Slot ROM select
CO02E:00 267 VERTCNT DFB 0 ;Addr for read of video cntr bits
V5-VB
CO02F:00 268 HORIZCNT DFB 0 ;Addr for read of video cntr bits
VA-HO
Cc030:00 269 SPKR DFB 0 ;Clicks the speaker
C031: 271 * 7 6 5 4 3 2 1 0
C031: 272 *| I | | | | | | |
Cc031: 273 *|3.5" [3.5" | | | | | | |
C031: 274 *|head |drive | 0 | 0 | 0 | 0 | 0 | 0 |
C031: 275 *|Select |enable]| | | | | | |
C031: 276 *| | | | | | | | |
C031: 277 * Annnn DISKREG status byte ~7°7°
Cc031: 279 * DISKREG bits defined as follows:
C031: 280 * Bit 7 = 1 to select head on 3.5" drive to use
C031: 281 * Bit 6 = 1 to enable 3.5" drive
Cc031: 282 * Bits 5, 4, 3, 2, 1, 0 must be 0
C031:00 284 DISKREG DFB 0 ;Used for 3.5" disk drives
C032: 286 * 7 6 5 4 3 2 1 0
c032: 287 *| | | | | | | I |
c032: 288 *| |Clear |Clear | | | | |
c032: 289 *| 0 |1 sec |scan | O | 0 | 0 | 0 | 0 |
Cc032: 290 *| |int |1n int | | | | | |
C032: 291 *| | | | | | | | |
c032: 292 * Annn~n~ - SCANINT byte ~nnnn
282 Appendix E: Soft Switches

—

Cc032:
C032:
C032:
Cc032:
C032:
Cc032:
C032:
Cc032:
C032:
C032:00

C033:
Cc033:
C033:
C033:
Cc033:
C033:
C033:

C033:
Cc033:

€033:00

C034:
C034:
C034:
C034:
C034:
C034:
C034:

C034:
Cc034:
C034:
C034:
C034:

Cc034:
C034:

C034:00

294
295
296
297
298
299
300
301
302
304

306
307
308
309
310
311
312

314
315

317

319
320
321
322
323
324
325

327
328
329
330

331

- 332

333

335

X% % % X ok % X %

SCANINT bits defined as follows:
Bit 7 must be 0

Bit 6 = Write 0 here to reset l-second interrupt
Bit 5 = Write 0 here to clear scan-line interrupt
Bit 4 must be 0

Bit 3 must be 0

Bit 2 must be 0

Bit 1 must be 0

Bit 0 must be 0

SCANINT DFB 0 ;Scan-line interrupt register

7 6 5 4 3 2 1 0

* |
* |
*|
* |
* |

*

*

Clock data register

~nnnnr CLOCKDATA byte ~7Ann

CLOCKDATA bits defined as follows:

Bits 7, 6, 5, 4, 3, 2, 1, 0 = Data passed to/from clock
chip

CLOCKDATA DFB 0 ;Clock data register

* |

|
*|Clock |Read/ |Chip | |
|
|

* | xfer |[Write |enable| O Border color
*| |chip |assert]|
*| | | I I | | I
* AAAAA CLOCKCTL byte ~A~nn
* CLOCKCTL bits defined as follows:
* Bit 7 = Set = 1 to start transfer to clock
* Read = 0 when transfer to clock is complete
* Bit 6 = 0 = Write to clock chip, 1 = Read from clock
chip
* Bit 5 = Clk chip enable asserted after transfer
0 = no/l1 = yes
* Bit 4 must be 0
* Bits 3, 2, 1, 0 = Select border color (see TBCOLOR for
values)
CLOCKCTL DFB 0 ;Clock control register

Appendix E: Soft Switches 283

7

C035: 337 * 7 6 5 4 3 2 1 0

C035: 338 *| | | | | | | | |

C035: 339 *| |Stop | |Stop |Stop |Stop |Stop |Stop |

Cc035: 340 *| O |I/0/LC| O |auxh-r|suprhr|hires2 |hiresl|txpg |

C035: 341 *| | shadow | | shadow | shadow| shadow | shadow | shadow]|

C035: 342 *| | I | | | | | I

C035: 343 * ANA~A - SHADOW byte AnAnn

C035: 345 * SHADOW bits defined as follows:

C035: 346 * Bit 7 must write 0

C035: 347 * Bit 6 = 1 to inhibit I/0 and language-card operation

C035: 348 * Bit 5 must write 0

C035: 349 * Bit 4 = 1 to inhibit shadowing aux hi-res page

C035: 350 * Bit 3 = 1 to inhibit shadowing 32K video buffer

C035: 351 * Bit 2 = 1 to inhibit shadowing hi-res page 2

C035: 352 * Bit 1 = 1 to inhibit shadowing hi-res page 1

C035: 353 * Bit 0 = 1 to inhibit shadowing text pages

C035:00 355 SHADOW DFB 0 ;Shadow register

C036: 357 * 7 6 5 4 3 2 1 0

C036: 358 *| | | | | | I | |

C036: 359 *|Slow/ | | |Shadow|Slot 7|Slot 6|Slot 5|Slot 4|

C036: 360 *|fast | O | O |in all|motor |motor |motor |motor |

C036: 361 *|speed | | | RAM |detect |detect |detect |detect |

C036: 362 *| | | | | | I l |

C036: 363 * AnnrAn CYAREG byte ~"annn

C036: 365 * CYAREG bits defined as follows:

C036: 366 * Bit 7 = 0 = Slow system speed, 1 = Fast system speed

C036: 367 * Bit 6 must write 0

C036: 368 * Bit 5 must write 0

C036: 369 * Bit 4 = Shadow in all RAM banks (never use)

C036: 370 * Bit 3 = Slot 7 disk motor on detect (set by Monitor
only)

C036: 371 * Bit 2 = Slot 6 disk motor on detect (set by Monitor
only)

C036: 372 * Bit 1 = Slot 5 disk motor on detect (set by Monitor
only)

C036: 373 * Bit 0 = Slot 4 disk motor on detect (set by Monitor
only)

C036:00 375 CYAREG DFB 0 ;Speed and motor on detect

C037:00 376 DMAREG DFB 0 ;Used during DMA as bank address

Cc038:00 377 SCCBREG DFB 0 ;SCC channel B cmd register

C039:00 378 SCCAREG DFB 0 ;SCC channel A cmd register

C03A:00 379 SCCBDATA DFB 0 ;SCC channel B data register

CO03B:00 380 SCCADATA DFB 0 ;SCC channel A data register

284 Appendix E: Soft Switches

C03cC:
co03cC:
co03cC:
C03cC:
C03cC:
co03cC:
Cc03cC:

c03cC:
. co03C:
. co3c:
Cc03cC:

c03cC:
C03C:
C03C:

c03C:00

e F s 2 i

CO03D:
CO03D:
| CO03D:
. C03D:
CO3D:
CO03D:
CO03D:

| C03D:
CO03D:

C03D:00

CO3E:
CO3E:
CO3E:
CO3E:
CO3E:
CO3E:
CO3E:

CO3E:
CO3E:

CO3E:00

382
383
384
385
386
387
388

390
391
392
393

394
395
396

398

400
401
402
403
404
405
406

408
409

411

413
414
415
416
417
418
419

421
422

424

* 7 6 5 4 3 2 1 0
x| I | | I I | I
* |Busy |Auto |Access| |
x| flag ldoc/ linc | 0 |
I

*|
*|
*

L S

*

| RAM |adrptr|

|
|
Volume DAC |
I
| I [| I | | |

AAAAA SOUNDCTL byte ~A~A~

SOUNDCTL bits defined as follows:
Bit 7 = 0 if not busy, 1 if busy
Bit 6 = 0 = Access doc, 1 = Access RAM

Bit 5 = 0 = Disable auto incrementing of address
pointer
1 = Enable auto incrementing of address pointer

Bit 4 must be 0

Bits 3, 2, 1, 0 = Volume DAC-$0/$F = Low/full volume
(write only)

SOUNDCTL DFB 0 ;Sound control register

* |
*|
*|
*|
* |

Sound data read/written

I | I I I I |

AAAAA SOUNDDATA byte ~~A~A

SOUNDDATA bits defined as follows:

Bits 7, 6, 5, 4, 3, 2, 1, 0 = Data read from/written to
sound RAM

SOUNDDATA DFB 0 ;Sound data register

*|
*|
*|
*|
x|

Low byte of sound address pointer

| I I I I

AAAAA SOUNDADRL byte ~AA~A

SOUNDADRL bits defined as follows:

Bits 7, 6, 5, 4, 3, 2, 1, 0 = Address into sound RAM
low byte

SOUNDADRL DFB 0 ;Sound address pointer, low byte

Appendix E: Soft Switches 285

CO3F: 426 * 7 6 5 4 3 2 1 0

CO3F: 427 *| | | | | | | | |

CO3F: 428 x| |

CO3F: 429 *| High byte of sound address pointer |

CO3F: 430 *| |

CO3F: 431 *| | | | | | | |

CO3F: 432 * AN~~~ SOUNDADRH byte ~7hnnn

CO3F: 434 * SOUNDADRH bits defined as follows:

CO3F: 435 * Bits 7, 6, 5, 4, 3, 2, 1, 0 = Address into sound RAM

high byte

CO3F:00 437 SOUNDADRH DFB 0 ;Sound address pointer, high byte

C040:00 438 DFB 0 ;Reserved for future system
expansion

% Note: The Mega II mouse is not used under Apple IIGs as a mouse, but the
soft switches and functions are used. Therefore, the programmer may not
use the Mega II mouse soft switches.

C041: 440 * 7 6 5 4 3 2 1 0

Cc041: 441 *| | ! | I I | I |

co41: 442 *| | | |[Enable |Enable|Enable|Enable |Enable]

C041: 443 *| 0 | 0 | 0 |1/4sec|VBL |switch|move |mouse |

Cc041: 444 *| | | lints |ints |ints |ints | |

Cc041: 445 *| I | | I I | | |

Cc041: 446 * Annann INTEN byte ~ArA~A

Cc041: 448 * INTEN bits defined as follows:

c041: 449 * Bit 7 must be 0

c041: 450 * Bit 6 must be 0

C041: 451 * Bit 5 must be 0

c041: 452 * Bit 4 = 1 to enable quarter-second interrupts

c041: 453 * Bit 3 = 1 to enable VBL interrupts

Cc041: 454 * Bit 2 = 1 to enable Mega II mouse switch interrupts

Cc041: 455 * Bit 1 = 1 to enable Mega II mouse movement interrupts

co41: 456 * Bit 0 = 1 to enable Mega II mouse operation

C041:00 458 INTEN DFB 0 ;Interrupt-enable register (firmware
use only)

C042:00 459 DFB 0 ;Reserved for future system
expansion

Cc043:00 460 DFB 0 ;Reserved for future system
expansion

286 Appendix E: Soft Switches

C044:
C044:
C044:
C044:
C044:
c044:
C044:

c044:
c044:

C044:

Cc045:
C045:
C045:
C045:
Cc045:
C045:
C045:

Cc045:
Cc045:

Cc045:

C046:
C046:
C046:
C046:
C046:
C046:
C046:

VU .

C046:
C046:

C046:

C046:

00

00

462
463
464
465
466
467
468

470
471

473

475
476
477
478
479
480
481

483%
484

486

488
489
490
491
492
493

434

496
497

498

499

* 7 6 5 4 3 2 1 0

x| I | | | | | | |
* | |
*| Mega II Mouse delta movement byte |
* | I
*| [[I | | | I
* Anrnnn MMDELTAX byte ~nAnn

* MMDELTAX bits defined as follows:

* Bits 7, 6, 5, 4, 3, 2, 1, 0 = Delta movement in 2’s
complement notation
MMDELTAX DFB 0 iMega II mouse delta X register

* 7 6 5 4 3 2 1 0

* | | I I | I | | I
*| I
* | Mega II Mouse delta movement byte |
*I I
*| | I I | I | I I
* AAAAA L MMDELTAY byte ~An~~

MMDELTAY bits defined as follows:
* Bits 7, 6, 5, 4, 3, 2, 1, 0 = Delta movement in 2’s
complement notation
MMDELTAY DFB 0 ;Mega II mouse delta Y register

* 7 6 5 4 3 2 1 0

*| | I | | | | | |
*|Sself/ |MMouse|Status|Status|Status|Status|Status|Status|
* |burnin |last |AN3 |1/4sec|VBL |switch|move |system|
*|diags |button]| |int |int |int |int | |
x| I | [| | I I |
5 %% DIAGTYRE Byke AA77%

* DIAGTYPE bits defined as follows:

* Bit 7 = 0 if self-diagnostics get used if BUTNO =
1/BUTN1 = 1

* Bit 7 = 1 if burn-in diagnostics get used if BUTNO =
1/BUTN1 = 1

* Bits 6-0 = Same as INTFLAG

Appendix E: Soft Switches 287

C046: 501 * 7 6 5 4 3 2 1 0

C046: 502 *| [[I | | | | |

C046: 503 *|MMouse IMMouse | Status|Status|Status|Status|Status|Status|

C046: 504 *|now |]last |AN3 |1/4sec|VBL |switch|move |system|

C046: 505 *|button |button] |int |int [int |int | IRQ |

C046: 506 *| | | | | I I | |

C046: 507 * Annnnr INTFLAG byte ~hann

C046: 509 * INTFLAG bits defined as follows:

C046: 510 * Bit 7 = 1 if mouse button currently down

C046: 511 * Bit 6 = 1 if mouse button was down on last read) |

C046: 512 * Bit 5 = Status of AN3

C046: 513 * Bit 4 = 1 if quarter-second interrupted

C046: 514 * Bit 3 = 1 if VBL interrupted

C046: 515 * Bit 2 = 1 if Mega II mouse switch interrupted

C046: 516 * Bit 1 = 1 if Mega II mouse movement interrupted

C046: 517 * Bit 0 = 1 if system IRQ line is asserted

C046: CO046 519 DIAGTYPE EQU * ;0/1 Self/burn-in diacnostias

C046:00 520 INTFLAG DFB 0 ;Interrupt flag register

C047:00 521 CLRVBLINT DFB 0 ;Clear the VBL/3.75Hz interrupt
flags

Cc048:00 522 CLRXYINT DFB 0 ;Clear Mega II mouse interr%?t flags

C049:00 523 DFB 0 /Reserved for future system
expansion

C04A:00 524 DFB 0 ;Reserved for future system
expansion

C04B:00 525 DFB 0 ;Reserved for future system
expansion

c04c:00 526 DFB 0 ;Reserved for future system
expansion

C04D:00 527 DFB 0 ;Reserved for future system
expansion

CO04E:00 528 DFB 0 Reserved for future system
expansion

CO04F:00 529 DFB 0 ;Reserved for future system
expansion

C050:00 530 TXTCLR DFB 0 ;Switch in graphics (not text)

C051:00 531 TXTSET DFB 0 ;Switch in text (not graphlcs%

C052:00 532 MIXCLR DFB 0 ;Clear mixed mode %‘é'

C053:00 . 533 MIXSET DFB 0 ;Set mixed mode (4 lines text)

C054:00 534 TXTPAGE1 DFB 0 ;Switch in text page 1

C055:00 535 TXTPAGE?2 DFB 0 ;Switch in text page 2

C056:00 536 LORES DFB 0 ;Low-resolution graphics

C057:00 537 HIRES DFB 0 ;High-resolution graphics

C058:00 538 SETANO DFB 0 ;Clear annunciator 0

288 Appendix E: Soft Switches

2

C059:00 539 CLRANO DFB 0 ;Set annunciator 0

CO5A:00 540 SETAN1 DFB 0 ;Clear annunciatorl

C05B:00 541 CLRAN1 DFB 0 ;Set annunciator 1

Cc05C:00 542 SETAN2 DFB 0 ;Clear annunciator 2

C05D:00 543 CLRAN DFB 0 ;Set annunciator 2

CO5E:00 544 SETAN3 DFB 0 ;Clear annunciator 3

CO5F:00 545 CLRAN3 DFB 0 ;Set annunciator 3

C060:00 546 BUTN3 DFB 0 ;Read switch 3

C061:00 547 BUTNO DFB 0 ;Read switch 0 (3 key)

€062:00 548 BUTN1 DFB 0 ;Read switch 1 (® key)

C063:00 549 BUTN2 DFB 0 ;Read switch 2

C064:00 550 PADDLO DFB 0 ;Read paddle 0

C065:00 551 DFB 0 ;Read paddle 1 |

C066:00 552 DFB 0 ;Read paddle 2 |

C067:00 553 DFB 0 ;Read paddle 3

c068: 555 * 7 6 5 4 3 2 1 0

Cc068: 556 *| | | | | | | I I

C068: 557 *|ALTZP |PAGE2 |RAMRD |RAMWRT |RDROM |LCBNK2 |ROMB | INTCX |

C068: 558 *|status |status|status|status|status|status|status|status]

Cc068: 559 *| | | | | | | | |

co68: _ = 560 *| | I | | | [[|

c068: 561 * ~Annr~r STATEREG status byte ~~~~7

co68: 563 * STATEREG bits defined as follows:

C068: 564 * Bit 7 = ALTZP status

C068: 565 * Bit 6 = PAGE2 status

c068: 566 * Bit 5 = RAMRD status

Cc068: 567 * Bit 4 = RAMWRT status

co068: 568 * Bit 3 = RDROM status (read only RAM/ROM (0/1))

Cc068: 570 * Important note: Perform two reads to $C083; then change

Cc068: 571 * STATEREG to change LCRAM/ROM banks (0/1); keep the

Cc068: 572 * language card write enabled.

C068: 573 *

C068: 575 * Bit 2 = LCBNK2 status 0 = LC bank 0, 1 = LC bank 1

C068: 576 * Bit 1 = ROMBANK status

Cco068: 577 * Bit 0 = INTCXROM status

c068:00.++ : 579 STATEREG DFB 0 ;State register

C069:00 7 580 DFB 0 ;Reserved for future system
expansion

CO06A:00 581 DFB 0 ;Reserved for future system
expansion

Appendix E: Soft Switches 289

C06B:00 582 DFB 0 ;Reserved for future system

expansion

C06C:00 583 DFB 0 ;Reserved for future system
expansion

C06D:00 584 TESTREG DFB 0 ;Test mode bit register

CO06E:00 585 CLRTM DFB 0 ;Clear test mode

CO06F:00 586 ENTM DFB 0 ;Enable test mode

C070:00 587 PTRIG DFB 0 ;Trigger the paddles

C071: 588 DS 15,0 ;ROM interrupt code jump table

c080:00 590 DFB 0 ;Sel LC RAM bank2 rd, wrt protect LC
RAM

c081:00 591 ROMIN DFB 0 ;Enable ROM read, 2 reads wrt enb LC
RAM

Cc082:00 592 DFB 0 ;Enable ROM read, wrt protect LC RAM

c083:00 593 LCBANK2 DFB 0 ;Sel LC RAM bank2, 2 rds wrt enb LC
RAM

c084:00 595 DFB 0 ;Sel LC RAM bank2 rd, wrt protect LC
RAM

Cc085:00 596 DFB 0 ;Enable ROM read, 2 reads wrt enb LC
RAM

Cc086:00 597 DFB 0 ;Enable ROM read, wrt protect LC RAM

Cc087:00 598 DFB 0 ;Sel LC RAM bank2, 2 rds wrt enb LC
RAM

c088:00 600 DFB 0 ;Sel LC RAM bankl rd, wrt protect LC
RAM

c089:00 601 DFB 0 ;Enable ROM read, 2 reads wrt enb LC
RAM

c08A:00 602 DFB 0 ;Enable ROM read, wrt protect LC RAM

C08B:00 603 LCBANK1 DFB 0 ;Sel LC RAM bankl, 2 rds wrt enb LC
RAM

co08cC:00 605 DFB 0 ;Sel LC RAM bankl rd, wrt protect LC
RAM

c08D:00 606 DFB 0 ;Enable ROM read, 2 reads wrt enb LC
RAM

CO8E:00 607 DFB 0 ;Enable ROM read, wrt protect LC RAM

CO08F:00 608 DFB 0 ;Sel LC RAM bankl, 2 rds wrt enb LC
RAM

0000:610 DEND

0000:612 CLRROM EQU SCFFF ;Switch out $C8 ROMs

290 Appendix E: Soft Switches

Table E-1

Symbol table sorted by symbol

CO1E ALTCHARSET
C060 BUTN3

C000 CLR80COL
CO05B CLRANI1
CO6E CLRTM

C026 DATAREG
CO6F ENTM

C046 INTFLAG
C025 KEYMODREG
C083 LCBANK2
C044 MMDELTAX
C029 NEWVIDEO
CO1F RDS80VID
C015 RDCXROM
C002 RDMAINRAM
C014 RDRAMWRT
C081 ROMIN

CO3A SCCBDATA
COOF SETALTCHAR
CO5C SETAN2
CO00B SETSLOTC3ROM
C02D SLTROMSEL
CO03D SOUNDDATA
CO06D TESTREG
C051 TXTSET

C004 WRMAINRAM

C061
C02C
C00C
C0sD
C047
C046
C057
C000
C027
C056
C045
C064
C016
C01D
C01B
CO1A
C032
C038
C009
COSE
C006
CO3F
C030
C050
CO2E

BUTNO
CHARROM
CLR80OVID
CLRAN2
CLRVBLINT
DIAGTYPE
HIRES
IOADR
KMSTATUS
LORES
MMDELTAY
PADDLO
RDALTZP
RDHIRES
RDMIX
RDTEXT
SCANINT
SCCBREG
SETALTZP
SETAN3
SETSLOTCXROM
SOUNDADRH
SPKR
TXTCLR
VERTCNT

C062

C034
COOE
COSF
C048
C031

CO2F
C010
C02B
C052
C021

C070

BUTNI1
CLOCKCTL
CLRALTCHAR
CLRAN3
CLRXYINT
DISKREG
HORIZCNT
KBDSTRB
LANGSEL
MIXCLR
MONOCOLOR
PTRIG

C017 RDC3ROM
C011 RDLCBNK2
C01C RDPAGE2
C019 RDVBLBAR
C03B SCCADATA
C001 SET80COL
C058 SETANO
COOA SETINTC3ROM
C008 SETSTDZP
CO3E SOUNDADRL
C068 STATEREG
C054 TXTPAGE1
C023 VGCINT

Appendix E: Soft Switches

C063
C033
C059
CFFF
C036
C037
C041
C000
C08B
C053
C024
C018
C003
C012
C013
€028
C039
C00D
CO5A
C007
C035
C03C
€022
C055
C005

BUTN2
CLOCKDATA
CLRANO
CLRROM
CYAREG
DMAREG
INTEN

KBD
LCBANK1
MIXSET
MOUSEDATA
RD80COL
RDCARDRAM
RDLCRAM
RDRAMRD
ROMBANK
SCCAREG
SET80VID
SETANI1
SETINTCXROM
SHADOW
SOUNDCTL
TBCOLOR C06
TXTPAGE2
WRCARDRAM

291

Table E-2
Symbol table sorted by address

C000
C002
C006
CO00A
COOE
C012
C016
CO1A
CO1E
C023
€027
C02C
C030
C034
C038
C03C
C041
C046
COs51
C055
C059
CO5D
C061
C068
C070
CFFF

292

—

IOADR
RDMAINRAM
SETSLOTCXROM
SETINTC3ROM
CLRALTCHAR
RDLCRAM
RDALTZP
RDTEXT
ALTCHARSET
VGCINT
KMSTATUS
CHARROM
SPKR
CLOCKCTL
SCCBREG
SOUNDCTL
INTEN
INTFLAG
TXTSET
TXTPAGE2
CLRANO
CLRAN2
BUTNO
STATEREG
PTRIG
CLRROM

C000
C003
C007
C00B
COOF
C013
C017
CO1B
CO1F
C024
C028
C02D
C031
C035
C039
C03D
C044
Co047
C052
C056
CO5A
COSE
C062
CO6D
C081

KBD
RDCARDRAM
SETINTCXROM
SETSLOTC3ROM
SETALTCHAR
RDRAMRD
RDC3ROM
RDMIX
RDS80OVID
MOUSEDATA
ROMBANK
SLTROMSEL
DISKREG
SHADOW
SCCAREG
SOUNDDATA
MMDELTAX
CLRVBLINT
MIXCLR
LORES
SETAN1
SETAN3
BUTNI1
TESTREG
ROMIN

Appendix E: Soft Switehes

C000
C004
C008 SETSTDZP
C00C CLR80VID
C010 KBDSTRB
C014 RDRAMWRT
C018 RDS80OCOL
C01C RDPAGE2
C021
C025
C029 NEWVIDEO
CO2E VERTCNT
C032 SCANINT
C036 CYAREG
CO3A SCCBDATA

CLR80COL

CO3E SOUNDADRI

C045 MMDELTAY
C048 CLRXYINT
C053 MIXSET
C057 HIRES
C05B CLRANI1
COSF CLRAN3
C063 BUTN2
CO6E CLRTM
C083 LCBANK2

WRMAINRAM

MONOCOLOR
KEYMODREG

C001 SET80COL
C005 WRCARDRAM
C009 SETALTZP
C00D SET80VID
C011 RDLCBNK2
C015 RDCXROM
C019 RDVBLBAR
C01D RDHIRES
C022 TBCOLOR
C026 DATAREG
C02B LANGSEL
CO2F HORIZCNT
C033 CLOCKDATA
C037 DMAREG
C03B SCCADATA
CO3F SOUNDADRH
C046 DIAGTYPE
C050 TXTCLR
C054 TXTPAGEI1
C058 SETANO
COSC SETAN2
C060 BUTN3

C064 PADDLO
CO6F ENTM

C08B LCBANKI1

Appendix F

Disassembler/
Mini-Assembler
Opcodes

This appendix lists all of the 65C816 instructions and the instruction formats that the
disassembler uses to define the contents of the disassembly. You may wish to hand-
assemble various short routines. This listing provides you with a ready reference for
the 65C816 instructions and addressing modes. Sometimes as the table begins a new
alphabetic item in the name field, a line break is inserted for readability. For cases
where the instructions are closely related to each other (such as branch instructions,
push instructions, and pull instructions), the line break is omitted.

In the table that follows, the addressing modes of the processor are abbreviated as
shown on the following page.

293

Abbreviation for
addressing mode

#

(a)
(a,x)
(d
D,y
(d,x)
(r,8),y
a

a,x
a,y
Acc
al
al,x
d

d,x
d,y

i

r

r,s

rl

S

Xya
[d]
[dl,y

294

Actual addressing
mode represented

Immediate

Absolute indirect

Absolute indexed indirect
Direct indirect

Direct indirect indexed
Direct indexed indirect
Stack relative indirect indexed
Absolute

Absolute indexed (with x)
Absolute indexed (with y)
Accumulator

Absolute long

Absolute indexed long
Direct

Direct indexed (with x)
Direct indexed (with y)
Implied

Program counter relative
Stack relative

Program counter relative long
Stack

Block move

Direct indirect long

Direct indirect indexed long

Appendix F: Disassembler/Mini-Assembler Opcodes

Cpcode Opcode
Name Mode Bytes number Name Mode Bytes number
ADC (d 2 72 BIT d 2 24
ADC (d,y 2 71 BIT d,x 2 34
ADC (dx) 2 61 BIT « 23 8
ADC (r,8),y 2 73 BIT a 3 2C
ADC d 2 65 BIT a,x 3 3C
ADC d,x 2 75
ADC r,s 2 63 EII:I/IIIZ lr, g 13)00
ADC [d] 2 67 BPL . 2 10
ADC [dl,y 2 77 BRA . 2 80
ADC # 23 69
ADC a 3 6D BRK i 2 00
igg a,x g ;193 BRL 1l 3 82
a,y BVC 2 50
ADC al 4 6F BVS r 2 70
ADC alx 4 7F
CLC i 1 18
AND ((e)) 2 32 CLD i 1 D8
AND D,y 2 31 CLI i 1 58
AND (d,x) 2 21 CLV i 1 B8
AND (r,s),y 2 33
AND d 2 25 CMP () 2 b2
AND dx 2 35 CMP— (Dy 2 b1
AND r,s 2 23 CMP (d,x) 2 Cl
AND [d 2 27 CMP — (r,8)y 2 D3
AND [dly 2 37 CMp o d 2 C5
AND a 3 2D CMP r,s 2 C3
AND a,x 3 3D CMP [dl] 2 C7
AND a,y 3 39 CMP [dl,y 2 D7
AND al 4 2F CMP # 23 O
AND alx 4 3F CMP a 5 CD
CMP ax 3 DD
ASL Acc 1 0A CMP a,y 3 D9
ASL d 2 06 CMP al 4 CF
igi d,x ; ég CMP alx 4 DF
a
ASL a,x 3 1E COP i 2 02
BCC 2 %0 CPX d 2 E4
BCS 2 BO CPX # 2 (3) EO
BEQ 2 FO CPX a 3 EC

Appendix F: Disassembler/Mini-Assembler Opcodes 295

|

Opcode Opcode
Name Mode Bytes number Name Mode Bytes number
CPY d 2 C4 JSL al 4 22
CPY # 2 (® Co JSR (a,x) 3 FC
CPY a 3 CC JSR a 3 20
DEC Acc 1 3A LDA (d) 2 B2
DEC d 2 Cc6 LDA Dy 2 B1
DEC d,x 2 D6 LDA (d,x) 2 Al
DEC a 3 CE LDA (r,8),y 2 B3
DEC a,x 3 DE LDA d 2 AS
DEX i 1 CA LDA d,x 2 BS
DEY i 1 88 LDA r,s 2 A3
EOR) 2 52 LDA [d] 2 A7
EOR),y 2 51 LDA [dl,y 2 B7
EOR (dx) 2 41 LDA — # 23 A9
EOR)y 2 53 LDA a 3 AD o
EOR d 2 45 LDA — ax 5 BD i
EOR dx 2 55 LDA ay 3 B
EOR r,s 2 43 LDA al 4 AF
EOR [d] 2 47 LDA al,x 4 BF
EOR [dl,y 2 57 LDX d 2 A6
EOR # 2.3 49 LDX d,y 2 B6
EOR a 3 4D LDX # 2 (® A2
EOR a,x 3 5D LDX a 3 AE
EOR a,y 3 59 LDX a,y 3 BE
EOR al 4 4F LDY d 2 A4
EOR al,x 4 SF LDY d,x 2 B4
INC Acc 1 1A LDY # 2 (3 A0
INC d 2 E6 LDY a 3 AC
INC d,x 2 F6 LDY a,x 3 BC
INC a 5 EE ISR Acc 1 4A
INC ax 3 FE LSR d 2 46
N ! £8 ISR dx 2 56
INY i ! c8 ISR a 3 4E
JML () 3 DC LSR a,x 3 SE
JMP (a) 3 6C MVN xya 3 54
JMP (ax) 3 7C MVP xya 3 44
JMP a 3 4C
JMP al 4 5C NOP i 1 EA
296 Appendix F: Disassembler/Mini-Assembler Opcodes

T ————r———

Opcode Opcode
Name . Mode Bytes number Name Mode Bytes number
ORA (D 2 12 ROR Acc 1 6A
ORA « ‘(d),y 2 11 ROR d 2 66
ORA (d,x) 2 01 ROR d,x 2 76
ORA (r,9),y 2 13 ROR a 3 6E
ORA d 2 05 ROR a,x 3 7E
ORA d,x 2 15 RTI s 1 40
ORA s 2 03 RTL s 1 6B
ORA [d] 2 07 RTS . 1 60
ORA d,y 2 17
ORA # 23 09 SBC (d) 2 F2
ORA a 3 0D SBC D,y 2 F2
ORA a,x 3 1D SBC dx) 2 E1l
ORA a,y 3 19 SBC (r,8),y 2 F3
ORA al 4 OF SBC d 2 ES
ORA ,i-glx 4 1F SBC d,x 2 F5
Sk SBC 1,s 2 E3
PEA Tis 5 F4 SBC [d] 2 E7
PEI s 2 D4 SBC [d] 2 F7
ly
PER s 3 62 SBC # 2 (3 E9
PHA s ! 48 SBC a 3 ED
PHB s ! 8B SBC ax 3 FD
PHD s 1 0B SBC ay 3 F9
PHK - s ! 4B SBC al 4 EF
PHP s 1 08 SBC alx 4 FF
PHX s 1 DA
PHY s 1 S5A SEC i 1 38
PLA s 1 68 gng : i Sg
PLB s 1 AB
PiD . . . SEP # 2 E2
PLP = s 1 28 STA (d) 2 92
PLX s 1 FA STA @y 2 91
PLY s 1 7A STA d,x) 2 81
STA (r,8),y 2 93
REP 2 c2 STA d 2 85
ROL Acc 1 2A STA d,x 2 95
ROL d 2 26 STA 1,s 2 83
ROL d,x 2 36 STA [d] 2 87
ROL a 3 2E STA [dl,y 2 97
ROL a,x 3 3E STA a 3 8D
STA a,x 3 9D
- STA a,y 3 9
STA al 4 8F
B STA al,x 4 OF
STP i 1 DB
Appendix F: Pisassempler/Mini-Assempler Opcedes 297

1
Opcode
Name Mode Bytes number
STX d 2 86
STX dy 2 9%
STX a 3 8E
STY d 2 84
STY d,x 2 94
STY a 3 8C
STZ d 2 64
STZ d,x 2 74
STZ a 3 9C
STZ a,x 3 9E
TAX i 1 AA
TAY i 1 A8
TCD i 1 5B
TCS i 1 1B
TDC i 1 7B
298 Appendix F: Disassembler; Mini-Assembler Opcodes

T ——_—_—m—

Appendix G

The Conirol Panel

The Control Panel firmware allows you to experiment with different system
configurations and change the system time. You can also permanently store any
changes in the battery-powered RAM (called Battery RAM). The Battery RAM is a
Macintosh clock chip that has 256 bytes of battery-powered RAM for system-
parameter storage.

The Control Panel program is a ROM-resident hardware configuration program. It is
invoked when the system is powered up if you press the Option key. An alternate means
of invoking the Control Panel is to perform a cold start by pressing Control and the
Option key at the same time and then Reset. The Desk Manager can also call the
Control Panel and affect the values specified in this appendix.

Control Panel parameters

The following are the selections and options available for ecach Control Panel menu. A
checkmark (\) indicates the default value for each option.

299

Printer port

Sets up all related functions for the printer port (slot 1). Options are as follows:

Option Choices Option Choices
Device connect v Printer Data bits V8
Modem 7
Line length v Unlimited 6
40 5
72 Stop bits V2
80 1
132 Parity Odd
Delete first LF after CR vV No Even
Yes v None
Add LF after CR v Yes DCD handshake V Yes
No No
Echo v No DSR/DTR handshake vV Yes
Yes No
Buffering v No XON/XOFF handshake Yes
Yes v No
Baud 50
75
110
134.5
150
300
600
1200
1800
2400
3600
4800
7200
v 9600
19,200

300 Appendix G: The Control Panel

Modem port
Sets up all related functions for the modem port (slot 2). Options are as follows:
Option Cholces Option Choices
Device connected v Modem Data bits V8
Printer 7
Line length v Unlimited 6
5
40
72 Stop bits v 2
80 1
132 Parity Odd
Delete first LF after CR vV No Even
Yes v None
Add LF after CR v Yes DCD handshake No
No v Yes
Echo v No DSR/DTR handshake v Yes
Yes No
Buffering \ No XON/XOFF handshake Yes
Yes v No
Baud 50
75
110
134.5
| 150
300
600
’ v 1200
1800
2400
3600
4800
7200
19,200

Control Panel parameters 301

Display

Selects all video-specific options. Choosing Type automatically causes color or
monochrome selections to appear on the rest of the screen. Options are as follows:

Line option Choices
Type vV Color
Mono
Columns v 40
80
Hertz v 60
50
Color/
monochrome
options Choices
Text (Color name is displayed.)
color Black Orange
Dark blue Light gray
Purple Pink
Dark green Light green
Dark gray Yellow
Medium blue Aquamarine
Light blue v White
Brown
Text (Color name is displayed.)
background Black Brown
Deep red Orange
Dark blue Light gray
Purple Pink
Dark green Light green
Dark gray Yellow
v Medium blue Aquamarine
Light blue White
302 Appendix G: The Control Panel

R R———_—

Color/

monochrome

options Choices

Border (Color name is displayed.)

color Black Brown
Deep red Orange
Dark blue Light gray
Purple Pink
Dark green Light green
Dark gray Yellow

v Medium blue Aquamarine

Light blue White

Standard No

colors v Yes

The Standard colors option indicates whether
your chosen colors match the Apple standard
values. If you select Yes, the current colors are
switched to Apple standard colors.

Sound

Allows system volume and pitch to be altered via an indicator bar. The default value is
in the middle of each range.

Speed

Allows default system speed of either normal speed (1 MHz) or fast speeds (2.6/2.8
RAM/ROM MHz). Available options are as follows: I

Option Choices

System speed V Fast
Normal

RAM disk
Allows default amount of free RAM to be used for RAM disk. Options are as follows:

Minimum free RAM for RAM disk: (minimum)
Maximum free RAM for RAM disk: (maximum)

Graduations between minimum and maximum are determined by adding or
subtracting 32K from the RAM size that is displayed. Limited to zero or the largest
selectable size. Default RAM disk size is 0 bytes minimum, 0 bytes maximum. RAM disk
size ranges from O bytes to largest selectable RAM disk size.

The amouint of free RAM (in kilobytes) for the RAM disk is displayed on the screen in
the format xxxxxK. Free RAM equals the total system RAM minus 256K.

The current RAM disk size is also displayed on the screen. The current RAM disk size
can be determined by one of the RAM disk driver commands.

The following message will be displayed on the screen:
Total RAM in use: xxxxxK
Total RAM in use equals total system RAM minus total free RAM.

The total free RAM disk space will be displayed on the screen. You can determine the
amount of total free RAM by calling the Memory Manager.

Control Panel parameters 303

Slots

Allows you to select either built-in device or peripheral card for slots 1, 2, 3, 4,5, 6,
and 7. Also allows you to select startup slot or to scan slots at startup time. Options
available are as follows:

Option Choices Option Choices
Slot 1 v Printer port Slot 7 Built-in AppleTalk
Your card Y Your card
Slot 2 v Modem port Startup slot vV Scan